• Title/Summary/Keyword: Asymmetric Dynamics

Search Result 84, Processing Time 0.024 seconds

The Stock Price Response of Palm Oil Companies to Industry and Economic Fundamentals

  • ARINTOKO, Arintoko
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.99-110
    • /
    • 2021
  • This study aims to examine empirically the industry and economic fundamental factors that affect the stock prices of the leading palm oil company in Indonesia. The dynamics of stock price are analyzed using the autoregressive distribution lag (ARDL) model both for symmetric and asymmetric effects. The data used in this study are monthly data for the period from 2008:01 to 2020:03. In the long run, the company stock price moves in line with the competitor company stock price at the current time. The palm oil price has a positive effect on the stock price. Meanwhile, inflation negatively affects the stock price in the short run. The estimated equilibrium correction coefficient indicates a reasonably quick correction of the distortion of the stock price equilibrium in monthly dynamics. However, fundamental factors have asymmetric effects, especially the response of stock price when these factors decrease rather than increase in the short run. Stock prices that are responsive to declines in fundamental performance should be of particular concern to both investors and management in their strategic decision making. The results of this study will contribute to the enrichment of literature related to stock prices from the viewpoint of economic analysis on firm-level data.

Time-Varying Comovement of KOSPI 200 Sector Indices Returns

  • Kim, Woohwan
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.4
    • /
    • pp.335-347
    • /
    • 2014
  • This paper employs dynamic conditional correlation (DCC) model to examine time-varying comovement in the Korean stock market with a focus on the financial industry. Analyzing the daily returns of KOSPI 200 eight sector indices from January 2008 to December 2013, we find that stock market correlations significantly increased during the GFC period. The Financial Sector had the highest correlation between the Constructions-Machinery Sector; however, the Consumer Discretionary and Consumer Staples sectors indicated a relatively lower correlation between the Financial Sector. In terms of model fitting, the DCC with t distribution model concludes as the best among the four alternatives based on BIC, and the estimated shape parameter of t distribution is less than 10, implicating a strong tail dependence between the sectors. We report little asymmetric effect in correlation dynamics between sectors; however, we find strong asymmetric effect in volatility dynamics for each sector return.

Gain-scheduled controller design of an Active Suspension System with an Asymmetric Hydraulic Cylinder using Feedback linearization technique & optimal (비대칭형 유압 실린더를 사용한 능동현가 시스템에서의 궤한 선형화와 최적제어기법을 이용한 이득계획제어기 설계)

  • Jang, Yu-Jin;Kim, Sang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.452-454
    • /
    • 1998
  • Asymmetric cylinders are usually used as an actuator of active suspensions. The conventional optimal controller design does not include actuator dynamics as a state. and force controller is needed to track the desired force. But the actuator is not ideal, so performance of an active suspension system is degraded. In this paper, we take account nonlinear actuator dynamics and obtain a linear model using a feedback linearization technique then apply optimal control method. For real time application, gain-scheduling method is used. Effectiveness of proposed method is demonstrated by numerical simulation of 1/4 car model.

  • PDF

A Study on Asymmetric Pulsed DC Plasma Power Supply with Energy Recovery Circuit (에너지 반환회로를 갖는 비대칭 펄스형 DC 플라즈마 전원장치에 관한 연구)

  • Choo, Dae-Hyeok;Yoo, Sung-Hwan;Kim, Joohn-Sheok;Han, Ki-Joon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.593-600
    • /
    • 2013
  • The asymmetric pulsed DC reactive magnetron sputtering system is widely used for the high quality plasma sputtering process such as a thin film deposition. In asymmetric pulsed DC power supply a reverse voltage is applied to the target periodically to minimize arc discharging effect. When sputtering in the mid-frequency range (20-350 kHz), the periodic target voltage reversals suppress arc formation at the target and provide long-term process stability. Thus, high quality, defect-free coatings of these materials can now be deposited at competitive rates. In this paper, a new style asymmetric pulsed DC power supply including mid-transformer is presented. In the proposed, an energy recovery circuit is adopted to reduce the mutual inductance of the transformer. As a result, the system dynamics of the voltage control loop is increased highly and the non-linear voltage boosting effect of the conventional system is removed. This work was proved through simulation and laboratory based experimental study.

Macroscopic and microscopic mass transfer in silicon czochralski method

  • Kakimoto, Koichi
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.381-383
    • /
    • 1999
  • First topic of this paper aims to clarify how oxygen and heat transfer in silicon melt under cusp-shaped magnetic fields. We obtained asymmetric temperature distribution by using time dependent and three-dimensional calculation. Second topic is study on molecular dynamics simulation, which was carried out to estimate diffusion constants of oxygen in silicon melt.

  • PDF

Analysis of Hierarchical Competition Structure and Pricing Strategy in the Hotel Industry

  • BAEK, Unji;SIM, Youngseok;LEE, Seul-Ki
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.4
    • /
    • pp.179-187
    • /
    • 2019
  • This study aims to investigate the effects of market commonality and resource similarity on price competition and the recursive consequences in the Korean lodging market. Price comparison among hotels in the same geographic market has been facilitated through the development of information technology, rendering little search cost of consumers. While the literature implies the heterogeneous price attack and response among hotels, a limited number of empirical researches focus on the asymmetric and recursive pattern in the competitive dynamics. This study empirically examines the price interactions in the Korean lodging market based on the theoretical framework of competitive price interactions and countervailing power. Demonstrating superiority to the spatial lag model and the ordinary least squares in the estimation, the results from spatial error model suggest that the hotels with longer operational history pose an asymmetric impact on the price of the newer hotels. The asymmetry is also found in chain hotels over the independent, further implying the possibility of predatory pricing. The findings of this study provide the evidence of a hierarchical structure in the price competition, with different countervailing power by the resources of the hotels. Theoretical and managerial implications are discussed, with suggestions for future study.

CFD Analysis on Effect of Pressure Drop and Flow Uniformity with Geometry in 13" Asymmetric DPF (13" 비대칭 DPF 내 형상에 따른 배압 및 유동균일도 영향에 관한 전산해석연구)

  • HAN, DANBEE;BYUN, HYUNSEUNG;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.614-621
    • /
    • 2020
  • Recently, as the fine dust is increased and the emission regulations of diesel engines are strengthened, interest in diesel soot filtration devices is rapidly increased. In particular, there is a demand for technology development for higher efficiency of diesel exhaust gas after-treatment devices. As part of this, many studies conducted to increase the exhaust gas treatment efficiency by improving the flow uniformity of the exhaust gas in the DPF and reducing the pressure drop between the inlet and outlet of disel particle filter (DPF). In this study, computational fluid dynamics (CFD) simulation was performed when exhaust gas flows into the canning reduction device equipped with a 13" asymmetric DPF in order to maintain the flow uniformity in the diesel exhaust system and reduce the pressure. In particular, a study was conducted to find the geometry with the smallest pressure drop and the highest flow uniformity by simulating the DPF I/O ratio, exhaust gas temperature, inlet-outlet pressure and flow uniformity according to the geometry and hole size of distributor.

Control Effectiveness Analysis of the hawkmoth Manduca sexta: a Multibody Dynamics Approach

  • Kim, Joong-Kwan;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.152-161
    • /
    • 2013
  • This paper presents a control effectiveness analysis of the hawkmoth Manduca sexta. A multibody dynamic model of the insect that considers the time-varying inertia of two flapping wings is established, based on measurement data from the real hawkmoth. A six-degree-of-freedom (6-DOF) multibody flight dynamics simulation environment is used to analyze the effectiveness of the control variables defined in a wing kinematics function. The aerodynamics from complex wing flapping motions is estimated by a blade element approach, including translational and rotational force coefficients derived from relevant experimental studies. Control characteristics of flight dynamics with respect to the changes of three angular degrees of freedom (stroke positional, feathering, and deviation angle) of the wing kinematics are investigated. Results show that the symmetric (asymmetric) wing kinematics change of each wing only affects the longitudinal (lateral) flight forces and moments, which implies that the longitudinal and lateral flight controls are decoupled. However, there are coupling effects within each plane of motion. In the longitudinal plane, pitch and forward/backward motion controls are coupled; in the lateral plane, roll and side-translation motion controls are coupled.

Coupled Analysis of Thermo-Fluid-Flexible Multi-body Dynamics of a Two-Dimensional Engine Nozzle

  • Eun, WonJong;Kim, JaeWon;Kwon, Oh-Joon;Chung, Chanhoon;Shin, Sang-Joon;Bauchau, Olivier A.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.70-81
    • /
    • 2017
  • Various components of an engine nozzle are modeled as flexible multi-body components that are operated under high temperature and pressure. In this paper, in order to predict complex behavior of an engine nozzle, thermo-fluid-flexible multi-body dynamics coupled analysis framework was developed. Temperature and pressure on the nozzle wall were obtained by the steady-state flow analysis for a two-dimensional nozzle. The pressure and temperature-dependent material properties were delivered to the flexible multi-body dynamics analysis. Then the deflection and strain distribution for a nozzle configuration was obtained. Heat conduction and thermal analyses were done using MSC.NASTRAN. The present framework was validated for a simple nozzle configuration by using a one-way coupled analysis. A two-way coupled analysis was also performed for the simple nozzle with an arbitrary joint clearance, and an asymmetric flow was observed. Finally, the total strain result for a realistic nozzle configuration was obtained using the one-way and two-way coupled analyses.

An Investigation of Flow and Pollutant Dispersion in Three-Dimensional Asymmetric Street Canyons Using a CFD Model (CFD 모형을 이용한 3차원 비대칭 도로 협곡에서의 흐름 및 오염물질 분산 연구)

  • Park, Seung-Bu;Baik, Jong-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.214-224
    • /
    • 2007
  • A three-dimensional computational fluid dynamics (CFD) model with the renormalization group (RNG) $k-{\varepsilon}$ turbulence model is used to examine the effects of difference in building height on flow and pollutant dispersion in asymmetric street canyons. Three numerical experiments with different street canyons formed by two isolated buildings are performed. In the experiment with equal building height, a portal vortex is formed in the street canyon and a typical recirculation zone is formed behind the downwind building. In the experiment with the downwind building being higher than the upwind building, the ambient flow comes into the street canyon at the front of the downwind building and incoming flow diverges strongly in the street canyon. Hence, pollutants released therein are strongly dispersed through the lateral sides of the street canyon. In the experiment with the upwind building being higher than the downwind building, a large recirculation zone is formed behind the upwind building, which is disturbed by the downwind building. Pollutants are weakly dispersed from the street canyon and the residue concentration ratio is largest among the three experiments. This study shows that the difference in upwind and downwind building height significantly influences flow and pollutant dispersion in and around the street canyon.