• 제목/요약/키워드: Astrocytes

검색결과 281건 처리시간 0.029초

흰쥐에서 척수 손상후 반응성 별아교세포에서의 CNTF 발현 증가 (Increased CNTF Expression in the Reactive Astrocyte Following Spinal Cord Injury in Rats)

  • 김창재;문세호;이병호;정미영;채준석;이문용;천명훈
    • The Korean Journal of Pain
    • /
    • 제11권2호
    • /
    • pp.182-193
    • /
    • 1998
  • Background: Ciliary neurotrophic factor (CNTF), identified as a survival factor for developing peripheral neurons is upregulated by reactive astrocytes in the traumatized tissue and in areas of terminal degeneration after a brain lesion. But in the spinal cord, CNTF is expressed in the non-astrocytic phenotypic, maybe oligodendrocytes. The present study was undertaken to determine the upregulation of CNTF expression in reactive astrocytes following spinal cord lesion in the rat. Methods: Unilateral incision of the dorsal funiculus at the thoracic level was performed and rats were sacrificed on days 3, 7, 14 and 28 postlesion. Western blot analysis, immunocytochemical analysis and double immunofluorescence for CNTF and glial fibrillary acidic protein (GFAP) were performed after spinal cord lesion. Results: A major band with 24 kDa and additional band of higher molecular weight form were detectable, and the intensity of the 24 kDa immunoreactive band increased up to 14 days postlesion and decreased toward laminectomized control values. CNTF immunoreactivity was markedly upregulated in the injured dorsal funiculus and adjacent gray matter. The time course of CNTF expression is coincident with the appearance of reactive astrocytes in the injured spinal cord. Moreover, double immunofluorescence for CNTF and glial fibrillary acidic protein (GFAP) revealed that CNTF immunoreactivity was in GFAP immunoreactive astrocytes. Conclusions: These results show that CNTF upregulation occurred in reactive astrocytes following spinal cord lesion, and suggest a role for CNTF in the regulation of astrocytic responses after spinal cord injury.

  • PDF

Activation of $PPAR{\alpha}$ Attenuates $IFNP{\gamma}$ and IL-$1{\beta}$-induced Cell Proliferation in Astrocytes: Involvement of IL-6 Independent Pathway

  • Lee, Jin-Koo;Seo, Eun-Min;Lee, Sang-Soo;Park, Soo-Hyun;Sim, Yun-Beom;Jung, Jun-Suh;Kim, Seon-Mi;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권3호
    • /
    • pp.185-189
    • /
    • 2010
  • The present study demonstrates the effect of fibrates, agonists of $PPAR{\alpha}$ on cytokines-induced proliferation in primary cultured astrocytes. Alone or combination treatment with cytokines, such as IL-$1{\beta}$ (10 ng/ml), $IFNP{\gamma}$ (10 ng/ml), and TNF-$\alpha$ (10 ng/ml) cause a significant increase of cell proliferation in a time-dependent manner. Treatment of astrocytes with bezafibrate and fenofibrate (0, 5, and $10\;{\mu}M$) reduced the $IFNP{\gamma}$ and IL-$1{\beta}$-induced cell proliferation in a dose-dependent manner. To address the involvement of IL-6 on the $IFNP{\gamma}$ and IL-$1{\beta}$-induced cell proliferation, released IL-6 level was measured. $IFNP{\gamma}$ and IL-$1{\beta}$ cause an increase of released IL-6 protein level in a time-dependent manner. Furthermore, pretreatment with IL-6 antibody (0, 0.1, 1, 2.5, and 5 ng/ml) dose-dependently inhibited the $IFNP{\gamma}$ and IL-$1{\beta}$-induced cell proliferation. However, bezafibrate and fenofibrate did not affect increased mRNA and protein levels of IL-6 in $IFNP{\gamma}$ and IL-$1{\beta}$-stimulated astrocytes. Taken together, these results clearly suggest that activation of $PPAR{\alpha}$ attenuates the $IFNP{\gamma}$ and IL-$1{\beta}$-induced cell proliferation through IL-6 independent pathway.

Mitogen-Activated Protein Kinases (MAPKs) Mediate SIN-1/ Glucose Deprivation-Induced Death in Rat Primary Astrocytes

  • Yoo Byoung-Kwon;Choi Ji-Woong;Choi Min-Sik;Ryu Mi-Kyoung;Park Gyu-Hwan;Jeon Mi-Jin;Ko Kwang-Ho
    • Archives of Pharmacal Research
    • /
    • 제28권8호
    • /
    • pp.942-947
    • /
    • 2005
  • Peroxynitrite is a potent neurotoxic molecule produced from a reaction between NO and super-oxide and induces NO-mediated inflammation under neuropathological conditions. Previously, we reported that glucose deprivation induced ATP depletion and cell death in immunostimulated astrocytes, which was mainly due to peroxynitrite. In this study, the role of MAPKs (ERK1/2, p38MAPK, and JNK/SAPK) signal pathway in the SIN-1/glucose deprivation-induced death of astrocytes was examined. A combined treatment with glucose deprivation and $50 {\mu}M$ SIN-1, an endogenous peroxynitrite generator, rapidly and markedly increased the death in rat primary astrocytes. Also, SIN-1/glucose deprivation resulted in the activation of MAPKs, which was significantly blocked by the treatment with $20{\mu}M$ MAPKs inhibitors (ERK1/2, PD98059; p38MAPK, SB203580; JNK/SAPK, SP600125). Interestingly, SIN-1/glucose deprivation caused the loss of intracellular ATP level, which was significantly reversed by MAPKs inhibitors. These results suggest that the activation of MAPKs plays an important role in SIN-1/glucose deprivation-induced cell death by regulating the intracellular ATP level.

Gintonin stimulates autophagic flux in primary cortical astrocytes

  • Rahman, Md. Ataur;Hwang, Hongik;Nah, Seung-Yeol;Rhim, Hyewhon
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.67-78
    • /
    • 2020
  • Background: Gintonin (GT), a novel ginseng-derived exogenous ligand of lysophosphatidic acid (LPA) receptors, has been shown to induce cell proliferation and migration in the hippocampus, regulate calcium-dependent ion channels in the astrocytes, and reduce β-amyloid plaque in the brain. However, whether GT influences autophagy in cortical astrocytes is not yet investigated. Methods: We examined the effect of GT on autophagy in primary cortical astrocytes using immunoblot and immunocytochemistry assays. Suppression of specific proteins was performed via siRNA. LC3 puncta was determined using confocal microscopy. Results: GT strongly upregulated autophagy marker LC3 by a concentration- as well as time-dependent manner via G protein-coupled LPA receptors. GT-induced autophagy was further confirmed by the formation of LC3 puncta. Interestingly, on pretreatment with an mammalian target of rapamycin (mTOR) inhibitor, rapamycin, GT further enhanced LC3-II and LC3 puncta expression. However, GT-induced autophagy was significantly attenuated by inhibition of autophagy by 3-methyladenine and knockdown Beclin-1, Atg5, and Atg7 gene expression. Importantly, when pretreated with a lysosomotropic agent, E-64d/peps A or bafilomycin A1, GT significantly increased the levels of LC3-II along with the formation of LC3 puncta. In addition, GT treatment enhanced autophagic flux, which led to an increase in lysosome-associated membrane protein 1 and degradation of ubiquitinated p62/SQSTM1. Conclusion: GT induces autophagy via mTOR-mediated pathway and elevates autophagic flux. This study demonstrates that GT can be used as an autophagy-inducing agent in cortical astrocytes.

Astrogliosis Is a Possible Player in Preventing Delayed Neuronal Death

  • Jeong, Hey-Kyeong;Ji, Kyung-Min;Min, Kyoung-Jin;Choi, Insup;Choi, Dong-Joo;Jou, Ilo;Joe, Eun-Hye
    • Molecules and Cells
    • /
    • 제37권4호
    • /
    • pp.345-355
    • /
    • 2014
  • Mitigating secondary delayed neuronal injury has been a therapeutic strategy for minimizing neurological symptoms after several types of brain injury. Interestingly, secondary neuronal loss appeared to be closely related to functional loss and/or death of astrocytes. In the brain damage induced by agonists of two glutamate receptors, N-ethyl-D-aspartic acid (NMDA) and kainic acid (KA), NMDA induced neuronal death within 3 h, but did not increase further thereafter. However, in the KA-injected brain, neuronal death was not obviously detectable even at injection sites at 3 h, but extensively increased to encompass the entire hemisphere at 7 days. Brain inflammation, a possible cause of secondary neuronal damage, showed little differences between the two models. Importantly, however, astrocyte behavior was completely different. In the NMDA-injected cortex, the loss of glial fibrillary acidic protein-expressing ($GFAP^+$) astrocytes was confined to the injection site until 7 days after the injection, and astrocytes around the damage sites showed extensive gliosis and appeared to isolate the damage sites. In contrast, in the KA-injected brain, $GFAP^+$ astrocytes, like neurons, slowly, but progressively, disappeared across the entire hemisphere. Other markers of astrocytes, including $S100{\beta}$, glutamate transporter EAAT2, the potassium channel Kir4.1 and glutamine synthase, showed patterns similar to that of GFAP in both NMDA- and KA-injected cortexes. More importantly, astrocyte disappearance and/or functional loss preceded neuronal death in the KA-injected brain. Taken together, these results suggest that loss of astrocyte support to neurons may be a critical cause of delayed neuronal death in the injured brain.

Lactosylceramide Mediates the Expression of Adhesion Molecules in TNF-${\alpha}$ and IFN ${\gamma}$-stimulated Primary Cultured Astrocytes

  • Lee, Jin-Koo;Kim, Jin-Kyu;Park, Soo-Hyun;Sim, Yun-Beom;Jung, Jun-Sub;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권5호
    • /
    • pp.251-258
    • /
    • 2011
  • Here we have investigated how lactosylceramide (LacCer) modulates gene expression of adhesion molecules in TNF-${\alpha}$ and IFN ${\gamma}$ (CM)-stimulated astrocytes. We have observed that stimulation of astrocytes with CM increased the gene expression of ICAM-1 and VCAM-1. D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) and N-butyldeoxynojirimycin (NBDNJ), inhibitors of glucosylceramide synthase (GLS) and LacCer synthase (galactosyltransferase, GalT-2), inhibited the gene expression of ICAM-1 and VCAM-1 and activation of their gene promoter induced by CM, which were reversed by exogenously supplied LacCer. Silencing of GalT-2 gene using its antisense oligonucleotides also attenuated CM-induced ICAM-1 and VCAM-1 expression, which were reversed by LacCer. PDMP treatment and silencing of GalT-2 gene significantly reduced CM-induced luciferase activities in NF-${\kappa}B$, AP-1, GAS, and STAT-3 luciferase vectors-transfected cells. In addition, LacCer reversed the inhibition of NF-${\kappa}B$ and STAT-1 luciferase activities by PDMP. Taken together, our results suggest that LacCer may play a crucial role in the expression of ICAM-1 and VCAM-1 via modulating transcription factors, such as NF-${\kappa}B$, AP-1, STAT-1, and STAT-3 in CM-stimulated astrocytes.

담배 니코틴에 의한 사람 태아 성상세포에서 종양괴사인자(TNF-α)의 발현 억제작용 (The Inhibitory Effect of Nicotine on TNF-α Expression in Human Fetal Astrocytes)

  • 손일홍;이성익;양현덕;한선정;석승한;이재규;김재현;박주영;문형인;이성수
    • 대한화학회지
    • /
    • 제51권3호
    • /
    • pp.251-257
    • /
    • 2007
  • 니코틴은 사람 대식세포에서 interleukin 2 (IL-2)와 종양괴사인자 (tumor necrosis factor-alpha; TNF-α) 가 생성되는 것을 억제하는데, 이러한 억제작용은 cytokine 유전자 발현 중 전사단계에서 전사인자의 활성을 억제함으로써 일어난다. 이러한 니코틴의 면역반응 억제작용은 아프타성궤양 및 궤양성대장염, 알레르기성폐 포염, 건초열 등에서도 보고되고 있다. 만일 중추신경계에서도 위와 같은 니코틴의 면역억제 작용이 일어난 다면 다발성경화증과 같은 면역반응 매개질환의 치료에 새로운 전기가 마련될 수 있을 것이다. 본 연구에서 는 중추신경계의 여러 면역반응 매개질환의 병태생리에 대한 이해를 넓히고자, 이미 알려진 니코틴의 cytokine 생성억제가 사람 중추신경계의 성상세포에서도 일어남을 확인하고 그 억제기전을 밝히고자 하였다. 이를 위 하여 사람 태아 성상세포에 다양한 농도의 니코틴과 IL-1β를 처리한 다음 TNF-α mRNA의 발현 정도와 NF- κB의 활성을 비교, 분석하여 다음과 같은 결과를 얻었다. 1. 사람 태아 성상세포를 0.1-20 μg/ml의 니코틴으로 처리해 본 결과 10 μg/ml 이상의 농도에서 세포독성능이 나타나기 시작하였다. 2. 사람 태아 성상세포에 IL- 1β를 처리하면 2시간만에 TNF-α mRNA가 최대로 발현되었으며 그 이후로는 점진적으로 감소하였다. 3. 사 람 태아 성상세포를 1 및 0.1 μg/ml의 니코틴으로 전처리한 후 IL-1β로 자극한 군에서는 IL-1β 단독 처리군에 비해 TNF-α mRNA의 발현이 감소하는 양상을 보였다. 1 μg/ml의 니코틴을 처리한 경우에는 8시간 이후부터 TNF-α mRNA의 발현이 현저하게 감소하여 12시간에 최대로 감소하였다. 또한 0.1 μg/ml의 니코틴을 처리한 군에서는 24시간에 가장 현저하게 감소하였다. 4. 성상세포에 IL-1β로 처리한 군에서는 강력한 NF-κB의 활성 을 확인할 수 있었으며, 니코틴을 전처리하고 IL-1β 자극한 군에서는 NF-B의 활성이 감소하였다. 결론적으로 일정농도 이상의 니코틴은 세포독성효과를 나타내나 적정한 농도와 시간 경과후 니코틴은 사람 태아 성상세포에서 IL-1β에 의해 유도되는 TNF-α의 발현 감소를 유도하며, 이는 NF-κB의 활성을 감소시킴으로써 나타난다고 생각된다.

Theiler's virus 에 감염된 마우스의 척수 신경교세포배양과 면역세포학적 관찰 (Culture of glial cells isolated from the spinal cord of demyelinating mice infected with Theiler's virus:An immunocytochemical study)

  • 신태균
    • 대한수의학회지
    • /
    • 제31권2호
    • /
    • pp.155-161
    • /
    • 1991
  • The mechanisms of demyelination in Theiler's murine encephalomyelitis virus (TMEV)-induced chronic central nervous system(CNS) disease are still unclear and are probably multifactoral. This study was intended to culture spinal cord cells isolated from TMEV-induced demyelinating mice. By Percoll density centrifugation of enzymatically dissociated tissue, the cells were collected and then cultured on poly-L-lysine-coated plastic coverslips for 2 weeks. Oligodendrocytes, astrocytes and macrophages were identified using cell-type specific markers. Viral antigens were not present in oligodendrocytes and in astrocytes by double immunofluorescence. Affected mouse oligodendrocytes had less capacities of sheet formation and galactocerebroside immunoreactivity than those of control cell 3. These findings support the hypothesis that immune mediated mechanisms play an important role in the process of demyelination in this animal model.

  • PDF

Phagocytic Roles of Glial Cells in Healthy and Diseased Brains

  • Jung, Yeon-Joo;Chung, Won-Suk
    • Biomolecules & Therapeutics
    • /
    • 제26권4호
    • /
    • pp.350-357
    • /
    • 2018
  • Glial cells are receiving much attention since they have been recognized as important regulators of many aspects of brain function and disease. Recent evidence has revealed that two different glial cells, astrocytes and microglia, control synapse elimination under normal and pathological conditions via phagocytosis. Astrocytes use the MEGF10 and MERTK phagocytic pathways, and microglia use the classical complement pathway to recognize and eliminate unwanted synapses. Notably, glial phagocytosis also contributes to the clearance of disease-specific protein aggregates, such as ${\beta}$-amyloid, huntingtin, and ${\alpha}$-synuclein. Here we reivew recent findings showing that glial cells are active regulators in brain functions through phagocytosis and that changes in glial phagocytosis contribute to the pathogenesis of various neurodegenerative diseases. A better understanding of the cellular and molecular mechanisms of glial phagocytosis in healthy and diseased brains will greatly improve our current approach in treating these diseases.

The Effect of NMDA/glycine Receptor Antagonist, 7-Chlorokynurenic Acid on Cultured Astrocytes Damaged by Ischemia-like Condition

  • 정인주
    • 대한의생명과학회지
    • /
    • 제15권4호
    • /
    • pp.355-362
    • /
    • 2009
  • I evaluated the protective effect of N-methyl-D-aspartate (NMDA)/glycine receptor antagonist, 7-chlorokinurenic acid (CKA) on cultured mouse astrocytes damaged by ischemia-like condition (ILC). The protective effect of CKA was assessed by cell viability, lactate dehydrogenase (LDH) activity, superoxide dismutase (SOD)-like activity and lipid peroxidation. To examine the effect of CKA on the cell apoptosis, the expression and the activity of caspase 3 were assessed by Western blotting. CKA increased the cell viability decreased by ILC. CKA also decreased the LDH activity and antioxidative effects such as SOD-like activity and inhibitory activity of lipid peroxidation. In addition, CKA suppressed the expression of caspase 3 associated with apoptosis, and increased the cell viability by the decrease of caspase 3 activity as like the caspase 3 inhibitor, Av-DVED-MED. From these results, these results suggest that ILS induces cell cytotoxicity in cultured astrocytes and CKA, NMDA/glycine receptor antagonist, is effective on the prevention of the cytotoxicity due to ILS by the antioxidative effect and the inhibition of apoptosis.

  • PDF