Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.133

Phagocytic Roles of Glial Cells in Healthy and Diseased Brains  

Jung, Yeon-Joo (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
Chung, Won-Suk (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
Publication Information
Biomolecules & Therapeutics / v.26, no.4, 2018 , pp. 350-357 More about this Journal
Abstract
Glial cells are receiving much attention since they have been recognized as important regulators of many aspects of brain function and disease. Recent evidence has revealed that two different glial cells, astrocytes and microglia, control synapse elimination under normal and pathological conditions via phagocytosis. Astrocytes use the MEGF10 and MERTK phagocytic pathways, and microglia use the classical complement pathway to recognize and eliminate unwanted synapses. Notably, glial phagocytosis also contributes to the clearance of disease-specific protein aggregates, such as ${\beta}$-amyloid, huntingtin, and ${\alpha}$-synuclein. Here we reivew recent findings showing that glial cells are active regulators in brain functions through phagocytosis and that changes in glial phagocytosis contribute to the pathogenesis of various neurodegenerative diseases. A better understanding of the cellular and molecular mechanisms of glial phagocytosis in healthy and diseased brains will greatly improve our current approach in treating these diseases.
Keywords
Phagocytosis; Astrocytes; Microglia; Synapse elimination; Neurodegenerative disease;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Tong, X., Ao, Y., Faas, G. C., Nwaobi, S. E., Xu, J., Haustein, M. D., Anderson, M. A., Mody, I., Olsen, M. L., Sofroniew, M. V. and Khakh, B. S. (2014) Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice. Nat. Neurosci. 17, 694-703.   DOI
2 Turner, M. R., Cagnin, A., Turkheimer, F. E., Miller, C. C., Shaw, C. E., Brooks, D. J., Leigh, P. N. and Banati, R. B. (2004) Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol. Dis. 15, 601-609.   DOI
3 Ulland, T. K., Song, W. M., Huang, S. C., Ulrich, J. D., Sergushichev, A., Beatty, W. L., Loboda, A. A., Zhou, Y., Cairns, N. J., Kambal, A., Loginicheva, E., Gilfillan, S., Cella, M., Virgin, H. W., Unanue, E. R., Wang, Y., Artyomov, M. N., Holtzman, D. M. and Colonna, M. (2017) TREM2 maintains microglial metabolic fitness in Alzheimer's disease. Cell 170, 649-663.e13.   DOI
4 Ulrich, J. D. and Holtzman, D. M. (2016) TREM2 function in Alzheimer's disease and neurodegeneration. ACS Chem. Neurosci. 7, 420-427.   DOI
5 Wang, Y., Cella, M., Mallinson, K., Ulrich, J. D., Young, K. L., Robinette, M. L., Gilfillan, S., Krishnan, G. M., Sudhakar, S., Zinselmeyer, B. H., Holtzman, D. M., Cirrito, J. R. and Colonna, M. (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 160, 1061-1071.   DOI
6 Weydt, P., Yuen, E. C., Ransom, B. R. and Moller, T. (2004) Increased cytotoxic potential of microglia from ALS-transgenic mice. Glia 48, 179-182.   DOI
7 Wyss-Coray, T., Loike, J. D., Brionne, T. C., Lu, E., Anankov, R., Yan, F., Silverstein, S. C. and Husemann, J. (2003) Adult mouse astrocytes degrade amyloid-${\beta}$ in vitro and in situ. Nat. Med. 9, 453-457.   DOI
8 Allen, N. J. and Barres, B. A. (2005) Signaling between glia and neurons: focus on synaptic plasticity. Curr. Opin. Neurobiol. 15, 542-548.   DOI
9 Allen, N. J., Bennett, M. L., Foo, L. C., Wang, G. X., Chakraborty, C., Smith, S. J. and Barres, B. A. (2012) Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486, 410-414.   DOI
10 Araque, A., Sanzgiri, R. P., Parpura, V. and Haydon, P. G. (1999) Astrocyte-induced modulation of synaptic transmission. Can. J. Physiol. Pharmacol. 77, 699-706.   DOI
11 Austin, S. A., Floden, A. M., Murphy, E. J. and Combs, C. K. (2006) ${\alpha}$-synuclein expression modulates microglial activation phenotype. J. Neurosci. 26, 10558-10563.   DOI
12 Zhang, B., Tian, M., Zheng, H., Zhen, Y., Yue, Y., Li, T., Li, S., Marcantonio, E. R. and Xie, Z. (2013) Effects of anesthetic isoflurane and desflurane on human cerebrospinal fluid $A{\beta}$ and ${\tau}$ level. Anesthesiology 119, 52-60.   DOI
13 Yamanaka, K., Chun, S. J., Boillee, S., Fujimori-Tonou, N., Yamashita, H., Gutmann, D. H., Takahashi, R., Misawa, H. and Cleveland, D. W. (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat. Neurosci. 11, 251-253.   DOI
14 Yang, J., Yang, H., Liu, Y., Li, X., Qin, L., Lou, H., Duan, S. and Wang, H. (2016a) Astrocytes contribute to synapse elimination via type 2 inositol 1,4,5-trisphosphate receptor-dependent release of ATP. Elife 5, e15043.
15 Yang, L., Liu, C. C., Zheng, H., Kanekiyo, T., Atagi, Y., Jia, L., Wang, D., N'Songo, A., Can, D., Xu, H., Chen, X. F. and Bu, G. (2016b) LRP1 modulates the microglial immune response via regulation of JNK and NF-${\kappa}B$ signaling pathways. J. Neuroinflammation 13, 304.   DOI
16 Zhang, Y., Chen, K., Sloan, S. A., Bennett, M. L., Scholze, A. R., O'Keeffe, S., Phatnani, H. P., Guarnieri, P., Caneda, C., Ruderisch, N., Deng, S., Liddelow, S. A., Zhang, C., Daneman, R., Maniatis, T., Barres, B. A. and Wu, J. Q. (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929-11947.   DOI
17 Cahoy, J. D., Emery, B., Kaushal, A., Foo, L. C., Zamanian, J. L., Christopherson, K. S., Xing, Y., Lubischer, J. L., Krieg, P. A., Krupenko, S. A., Thompson, W. J. and Barres, B. A. (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264-278.   DOI
18 Bellesi, M., de Vivo, L., Chini, M., Gilli, F., Tononi, G. and Cirelli, C. (2017) Sleep loss promotes astrocytic phagocytosis and microglial activation in mouse cerebral cortex. J. Neurosci. 37, 5263-5273.   DOI
19 Benkler, C., Ben-Zur, T., Barhum, Y. and Offen, D. (2013) Altered astrocytic response to activation in SOD1(G93A) mice and its implications on amyotrophic lateral sclerosis pathogenesis. Glia 61, 312-326.   DOI
20 Bolmont, T., Haiss, F., Eicke, D., Radde, R., Mathis, C. A., Klunk, W. E., Kohsaka, S., Jucker, M. and Calhoun, M. E. (2008) Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci. 28, 4283-4292.   DOI
21 Chung, W. S., Clarke, L. E., Wang, G. X., Stafford, B. K., Sher, A., Chakraborty, C., Joung, J., Foo, L. C., Thompson, A., Chen, C., Smith, S. J. and Barres, B. A. (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504, 394-400.   DOI
22 Chen, K., Iribarren, P., Hu, J., Chen, J., Gong, W., Cho, E. H., Lockett, S., Dunlop, N. M. and Wang, J. M. (2006) Activation of Toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease-associated amyloid ${\beta}$ peptide. J. Biol. Chem. 281, 3651-3659.   DOI
23 Cho, K. J., Cheon, S. Y. and Kim, G. W. (2016) Apoptosis signal-regulating kinase 1 mediates striatal degeneration via the regulation of C1q. Sci. Rep. 6, 18840.   DOI
24 Chung, W. S. and Barres, B. A. (2012) The role of glial cells in synapse elimination. Curr. Opin. Neurobiol. 22, 438-445.   DOI
25 Chung, W. S., Verghese, P. B., Chakraborty, C., Joung, J., Hyman, B. T., Ulrich, J. D., Holtzman, D. M. and Barres, B. A. (2016) Novel allele-dependent role for APOE in controlling the rate of synapse pruning by astrocytes. Proc. Natl. Acad. Sci. U.S.A. 113, 10186-10191.   DOI
26 Clarke, L. E. and Barres, B. A. (2013) Emerging roles of astrocytes in neural circuit development. Nat. Rev. Neurosci. 14, 311-321.   DOI
27 Diniz, L. P., Matias, I. C., Garcia, M. N. and Gomes, F. C. (2014) Astrocytic control of neural circuit formation: highlights on TGF-${\beta}$ signaling. Neurochem. Int. 78, 18-27.   DOI
28 Clement, A. M., Nguyen, M. D., Roberts, E. A., Garcia, M. L., Boillee, S., Rule, M., McMahon, A. P., Doucette, W., Siwek, D., Ferrante, R. J., Brown, R. H., Jr., Julien, J. P., Goldstein, L. S. and Cleveland, D. W. (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302, 113-117.   DOI
29 Cuyvers, E., Bettens, K., Philtjens, S., Van Langenhove, T., Gijselinck, I., van der Zee, J., Engelborghs, S., Vandenbulcke, M., Van Dongen, J., Geerts, N., Maes, G., Mattheijssens, M., Peeters, K., Cras, P., Vandenberghe, R., De Deyn, P. P., Van Broeckhoven, C., Cruts, M. and Sleegers, K. (2014) Investigating the role of rare heterozygous TREM2 variants in Alzheimer's disease and frontotemporal dementia. Neurobiol. Aging 35, 726.e11-726.e19.   DOI
30 Depboylu, C., Schafer, M. K., Arias-Carrion, O., Oertel, W. H., Weihe, E. and Hoglinger, G. U. (2011) Possible involvement of complement factor C1q in the clearance of extracellular neuromelanin from the substantia nigra in Parkinson disease. J. Neuropathol. Exp. Neurol. 70, 125-132.   DOI
31 Dong, J. H., Ying, G. X. and Zhou, C. F. (2004) Entorhinal deafferentation induces the expression of profilin mRNA in the reactive microglial cells in the hippocampus. Glia 47, 102-108.   DOI
32 Fraser, D. A., Pisalyaput, K. and Tenner, A. J. (2010) C1q enhances microglial clearance of apoptotic neurons and neuronal blebs, and modulates subsequent inflammatory cytokine production. J. Neurochem. 112, 733-743.   DOI
33 Gong, Y. H. and Elliott, J. L. (2000) Metallothionein expression is altered in a transgenic murine model of familial amyotrophic lateral sclerosis. Exp. Neurol. 162, 27-36.   DOI
34 Fricker, M., Neher, J. J., Zhao, J. W., Thery, C., Tolkovsky, A. M. and Brown, G. C. (2012) MFG-E8 mediates primary phagocytosis of viable neurons during neuroinflammation. J. Neurosci. 32, 2657-2666.   DOI
35 Fu, R., Shen, Q., Xu, P., Luo, J. J. and Tang, Y. (2014) Phagocytosis of microglia in the central nervous system diseases. Mol. Neurobiol. 49, 1422-1434.   DOI
36 Gasque, P. (2004) Complement: a unique innate immune sensor for danger signals. Mol. Immunol. 41, 1089-1098.   DOI
37 Hanke, M. L. and Kielian, T. (2011) Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond). 121, 367-387.   DOI
38 Hardiman, O., van den Berg, L. H. and Kiernan, M. C. (2011) Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat. Rev. Neurol. 7, 639-649
39 Hayakawa, K., Esposito, E., Wang, X., Terasaki, Y., Liu, Y., Xing, C., Ji, X. and Lo, E. H. (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535, 551-555.   DOI
40 Hong, S., Beja-Glasser, V. F., Nfonoyim, B. M., Frouin, A., Li, S., Ramakrishnan, S., Merry, K. M., Shi, Q., Rosenthal, A., Barres, B. A., Lemere, C. A., Selkoe, D. J. and Stevens, B. (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712-716.   DOI
41 Huang, B., Wei, W., Wang, G., Gaertig, M. A., Feng, Y., Wang, W., Li, X. J. and Li, S. (2015) Mutant huntingtin downregulates myelin regulatory factor-mediated myelin gene expression and affects mature oligodendrocytes. Neuron 85, 1212-1226.   DOI
42 Jiang, R., Diaz-Castro, B., Looger, L. L. and Khakh, B. S. (2016) Dysfunctional calcium and glutamate signaling in striatal astrocytes from huntington's disease model mice. J. Neurosci. 36, 3453-3470.   DOI
43 Jana, M., Palencia, C. A. and Pahan, K. (2008) Fibrillar amyloid-${\beta}$ peptides activate microglia via TLR2: implications for Alzheimer's disease. J. Immunol. 181, 7254-7262.   DOI
44 Ghosh, R. and Tabrizi, S. J. (2015) Clinical aspects of huntington's disease. Curr. Top. Behav. Neurosci. 22, 3-31.
45 Jansen, A. H., van Hal, M., Op den Kelder, I. C., Meier, R. T., de Ruiter, A. A., Schut, M. H., Smith, D. L., Grit, C., Brouwer, N., Kamphuis, W., Boddeke, H. W., den Dunnen, W. F., van Roon, W. M., Bates, G. P., Hol, E. M. and Reits, E. A. (2017) Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cell-type-specific. Glia 65, 50-61.   DOI
46 Jones, R. S., Minogue, A. M., Connor, T. J. and Lynch, M. A. (2013) Amyloid-${\beta}$-induced astrocytic phagocytosis is mediated by CD36, CD47 and RAGE. J. Neuroimmune Pharmacol. 8, 301-311.   DOI
47 Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Szternfeld, R., Ulland, T. K., David, E., Baruch, K., Lara-Astaiso, D., Toth, B., Itzkovitz, S., Colonna, M., Schwartz, M. and Amit, I. (2017) A unique microglia type associated with restricting development of Alzheimer's disease. Cell 169, 1276-1290.e17.   DOI
48 Kim, J. G., Moon, M. Y., Kim, H. J., Li, Y., Song, D. K., Kim, J. S., Lee, J. Y., Kim, J., Kim, S. C. and Park, J. B. (2012) Ras-related GTPases Rap1 and RhoA collectively induce the phagocytosis of serum-opsonized zymosan particles in macrophages. J. Biol. Chem. 287, 5145-5155.   DOI
49 Lasiene, J. and Yamanaka, K. (2011) Glial cells in amyotrophic lateral sclerosis. Neurol. Res. Int. 2011, 718987.
50 Klegeris, A., Pelech, S., Giasson, B. I., Maguire, J., Zhang, H., Mc-Geer, E. G. and McGeer, P. L. (2008) ${\alpha}$-synuclein activates stress signaling protein kinases in THP-1 cells and microglia. Neurobiol. Aging 29, 739-752.   DOI
51 Lee, C. Y. and Landreth, G. E. (2010) The role of microglia in amyloid clearance from the AD brain. J Neural Transm (Vienna). 117, 949-960.   DOI
52 Lee, Y. I., Li, Y., Mikesh, M., Smith, I., Nave, K. A., Schwab, M. H. and Thompson, W. J. (2016) Neuregulin1 displayed on motor axons regulates terminal Schwann cell-mediated synapse elimination at developing neuromuscular junctions. Proc. Natl. Acad. Sci. U.S.A. 113, E479-E487.   DOI
53 Lee, Y. J., Han, S. B., Nam, S. Y., Oh, K. W. and Hong, J. T. (2010) Inflammation and Alzheimer's disease. Arch. Pharm. Res. 33, 1539-1556.   DOI
54 Lees, A. J., Hardy, J. and Revesz, T. (2009) Parkinson's disease. Lancet 373, 2055-2066.   DOI
55 Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., Bennett, M. L., Munch, A. E., Chung, W. S., Peterson, T. C., Wilton, D. K., Frouin, A., Napier, B. A., Panicker, N., Kumar, M., Buckwalter, M. S., Rowitch, D. H., Dawson, V. L., Dawson, T. M., Stevens, B. and Barres, B. A. (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481-487.   DOI
56 Liu, S., Liu, Y., Hao, W., Wolf, L., Kiliaan, A. J., Penke, B., Rube, C. E., Walter, J., Heneka, M. T., Hartmann,T., Menger, M. D. and Fassbender, K. (2012) TLR2 is a primary receptor for Alzheimer's amyloid ${\beta}$ peptide to trigger neuroinflammatory activation. J. Immunol. 188, 1098-1107.   DOI
57 Meyer-Luehmann, M., Spires-Jones, T. L., Prada, C., Garcia-Alloza, M., de Calignon, A., Rozkalne, A., Koenigsknecht-Talboo, J., Holtzman, D. M., Bacskai, B. J. and Hyman, B. T. (2008) Rapid appearance and local toxicity of amyloid-${\beta}$ plaques in a mouse model of Alzheimer's disease. Nature 451, 720-724.   DOI
58 Lopez-Murcia, F. J., Terni, B. and Llobet, A. (2015) SPARC triggers a cell-autonomous program of synapse elimination. Proc. Natl. Acad. Sci. U.S.A. 112, 13366-13371.   DOI
59 Matarin, M., Salih, D. A., Yasvoina, M., Cummings, D. M., Guelfi, S., Liu, W., Nahaboo Solim, M. A., Moens, T. G., Paublete, R. M., Ali, S. S., Perona, M., Desai, R., Smith, K. J., Latcham, J., Fulleylove, M., Richardson, J. C., Hardy, J. and Edwards, F. A. (2015) A genome-wide gene-expression analysis and database in transgenic mice during development of amyloid or tau pathology. Cell Rep. 10, 633-644.   DOI
60 McGeer, P. L. and McGeer, E. G. (2013) The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol. 126, 479-497.   DOI
61 Michelakakis, H., Xiromerisiou, G., Dardiotis, E., Bozi, M., Vassilatis, D., Kountra, P. M., Patramani, G., Moraitou, M., Papadimitriou, D., Stamboulis, E., Stefanis, L., Zintzaras, E. and Hadjigeorgiou, G. M. (2012) Evidence of an association between the scavenger receptor class B member 2 gene and Parkinson's disease. Mov. Disord. 27, 400-405.   DOI
62 Neher, J. J., Emmrich, J. V., Fricker, M., Mander, P. K., Thery, C. and Brown, G. C. (2013) Phagocytosis executes delayed neuronal death after focal brain ischemia. Proc. Natl. Acad. Sci. U.S.A. 110, E4098-E4107.   DOI
63 Nimmerjahn, A., Kirchhoff, F. and Helmchen, F. (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314-1318.   DOI
64 Paolicelli, R. C. and Gross, C. T. (2011) Microglia in development: linking brain wiring to brain environment. Neuron Glia Biol. 7, 77-83.   DOI
65 Noda, M. and Suzumura, A. (2012) Sweepers in the CNS: Microglial migration and phagocytosis in the Alzheimer disease pathogenesis. Int. J. Alzheimers Dis. 2012, 891087.
66 Olson, J. K. and Miller, S. D. (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J. Immunol. 173, 3916-3924.   DOI
67 Painter, M. M., Atagi, Y., Liu, C. C., Rademakers, R., Xu, H., Fryer, J. D. and Bu, G. (2015) TREM2 in CNS homeostasis and neurodegenerative disease. Mol. Neurodegener. 10, 43.   DOI
68 Park, J. Y., Paik, S. R., Jou, I. and Park, S. M. (2008) Microglial phagocytosis is enhanced by monomeric alpha-synuclein, not aggregated alpha-synuclein: implications for Parkinson's disease. Glia 56, 1215-1223.   DOI
69 Pearce, M. M., Spartz, E. J., Hong, W., Luo, L. and Kopito, R. R. (2015) Prion-like transmission of neuronal huntingtin aggregates to phagocytic glia in the Drosophila brain. Nat. Commun. 6, 6768.   DOI
70 Phatnani, H. and Maniatis, T. (2015) Astrocytes in neurodegenerative disease. Cold Spring Harb Perspect Biol. 7, 1-17
71 Philips, T. and Robberecht, W. (2011) Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol. 10, 253-263.   DOI
72 Pihlaja, R., Koistinaho, J., Malm, T., Sikkila, H., Vainio, S. and Koistinaho, M. (2008) Transplanted astrocytes internalize deposited ${\beta}$-amyloid peptides in a transgenic mouse model of Alzheimer's disease. Glia 56, 154-163.   DOI
73 Rocha, S. M., Cristovao, A. C., Campos, F. L., Fonseca, C. P. and Baltazar, G. (2012) Astrocyte-derived GDNF is a potent inhibitor of microglial activation. Neurobiol. Dis. 47, 407-415.   DOI
74 Pomilio, C., Pavia, P., Gorojod, R. M., Vinuesa, A., Alaimo, A., Galvan, V., Kotler, M. L., Beauquis, J. and Saravia, F. (2016) Glial alterations from early to late stages in a model of Alzheimer's disease: Evidence of autophagy involvement in $A{\beta}$ internalization. Hippocampus 26, 194-210.   DOI
75 Purice, M. D., Speese, S. D. and Logan, M. A. (2016) Delayed glial clearance of degenerating axons in aged Drosophila is due to reduced PI3K/Draper activity. Nat. Commun. 7, 12871.   DOI
76 Radford, R. A., Morsch, M., Rayner, S. L., Cole, N. J., Pountney, D. L. and Chung, R. S. (2015) The established and emerging roles of astrocytes and microglia in amyotrophic lateral sclerosis and frontotemporal dementia. Front Cell Neurosci. 9, 414.
77 Rojanathammanee, L., Murphy, E. J. and Combs, C. K. (2011) Expression of mutant ${\alpha}$-synuclein modulates microglial phenotype in vitro. J. Neuroinflammation 8, 44.   DOI
78 Salminen, A., Ojala, J., Kauppinen, A., Kaarniranta, K. and Suuronen, T. (2009) Inflammation in Alzheimer's disease: amyloid-${\beta}$ oligomers trigger innate immunity defence via pattern recognition receptors. Prog. Neurobiol. 87, 181-194.   DOI
79 Savage, J. C., Jay, T., Goduni, E., Quigley, C., Mariani, M. M., Malm, T., Ransohoff, R. M., Lamb, B. T. and Landreth, G. E. (2015) Nuclear receptors license phagocytosis by trem2+ myeloid cells in mouse models of Alzheimer's disease. J. Neurosci. 35, 6532-6543.   DOI
80 Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., Cooper, N. R., Eikelenboom, P., Emmerling, M., Fiebich, B. L., Finch, C. E., Frautschy, S., Griffin, W. S., Hampel, H., Hull, M., Landreth, G., Lue, L., Mrak, R., Mackenzie, I. R., McGeer, P. L., O'Banion, M. K., Pachter, J., Pasinetti, G., Plata-Salaman, C., Rogers, J., Rydel, R., Shen, Y., Streit, W., Strohmeyer, R., Tooyoma, I., Van Muiswinkel, F. L., Veerhuis, R., Walker, D., Webster, S., Wegrzyniak, B., Wenk, G. and Wyss-Coray, T. (2000) Inflammation and Alzheimer's disease. Neurobiol. Aging 21, 383-421.   DOI
81 Sofroniew, M. V. (2015) Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci. 16, 249-263.   DOI
82 Schafer, D. P., Lehrman, E. K., Kautzman, A. G., Koyama, R., Mardinly, A. R., Yamasaki, R., Ransohoff, R. M., Greenberg, M. E., Barres, B. A. and Stevens, B. (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691-705.   DOI
83 Selkoe, D. J. and Hardy, J. (2016) The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med. 8, 595-608.   DOI
84 Shin, J. Y., Fang, Z. H., Yu, Z. X., Wang, C. E., Li, S. H. and Li, X. J. (2005) Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J. Cell Biol. 171, 1001-1012.   DOI
85 Sofroniew, M. V. and Vinters, H. V. (2010) Astrocytes: biology and pathology. Acta Neuropathol. 119, 7-35.   DOI
86 Sollvander, S., Nikitidou, E., Brolin, R., Soderberg, L., Sehlin, D., Lannfelt, L. and Erlandsson, A. (2016) Accumulation of amyloid-${\beta}$ by astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons. Mol. Neurodegener. 11, 38.   DOI
87 Song, J. W., Misgeld, T., Kang, H., Knecht, S., Lu, J., Cao, Y., Cotman, S. L., Bishop, D. L. and Lichtman, J. W. (2008) Lysosomal activity associated with developmental axon pruning. J. Neurosci. 28, 8993-9001.   DOI
88 Stephan, A. H., Madison, D. V., Mateos, J. M., Fraser, D. A., Lovelett, E. A., Coutellier, L., Kim, L., Tsai, H. H., Huang, E. J., Rowitch, D. H., Berns, D. S., Tenner, A. J., Shamloo, M. and Barres, B. A. (2013) A dramatic increase of C1q protein in the CNS during normal aging. J. Neurosci. 33, 13460-13474.   DOI
89 Streit, W. J., Walter, S. A. and Pennell, N. A. (1999) Reactive microgliosis. Prog. Neurobiol. 57, 563-581.   DOI
90 Stevens, B., Allen, N. J., Vazquez, L. E., Howell, G. R., Christopherson, K. S., Nouri, N., Micheva, K. D., Mehalow, A. K., Huberman, A. D., Stafford, B., Sher, A., Litke, A. M., Lambris, J. D., Smith, S. J., John, S. W. and Barres, B. A. (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164-1178.   DOI
91 Suh, E. C., Jung, Y. J., Kim, Y. A., Park, E. M., Lee, S. J. and Lee, K. E. (2013) Knockout of Toll-like receptor 2 attenuates $A{\beta}25$-35-induced neurotoxicity in organotypic hippocampal slice cultures. Neurochem. Int. 63, 818-825.   DOI
92 Tahara, K., Kim, H. D., Jin, J. J., Maxwell, J. A., Li, L. and Fukuchi, K. (2006) Role of toll-like receptor signalling in $A{\beta}$ uptake and clearance. Brain 129, 3006-3019.   DOI
93 Tang, S. C., Arumugam, T. V., Xu, X., Cheng, A., Mughal, M. R., Jo, D. G., Lathia, J. D., Siler, D. A., Chigurupati, S., Ouyang, X., Magnus, T., Camandola, S. and Mattson, M. P. (2007) Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc. Natl. Acad. Sci. U.S.A. 104, 13798-13803.   DOI
94 Tasdemir-Yilmaz, O. E. and Freeman, M. R. (2014) Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons. Genes Dev. 28, 20-33.   DOI
95 Terni, B., Lopez-Murcia, F. J. and Llobet, A. (2017) Role of neuron-glia interactions in developmental synapse elimination. Brain Res. Bull. 129, 74-81.   DOI