• 제목/요약/키워드: Association Rules Mining

검색결과 308건 처리시간 0.022초

목표 속성을 고려한 연관규칙과 분류 기법 (Directed Association Rules Mining and Classification)

  • 한경록;김재련
    • 산업경영시스템학회지
    • /
    • 제24권63호
    • /
    • pp.23-31
    • /
    • 2001
  • Data mining can be either directed or undirected. One way of thinking about it is that we use undirected data mining to recognize relationship in the data and directed data mining to explain those relationships once they have been found. Several data mining techniques have received considerable research attention. In this paper, we propose an algorithm for discovering association rules as directed data mining and applying them to classification. In the first phase, we find frequent closed itemsets and association rules. After this phase, we construct the decision trees using discovered association rules. The algorithm can be applicable to customer relationship management.

  • PDF

Generalized Fuzzy Quantitative Association Rules Mining with Fuzzy Generalization Hierarchies

  • Lee, Keon-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권3호
    • /
    • pp.210-214
    • /
    • 2002
  • Association rule mining is an exploratory learning task to discover some hidden dependency relationships among items in transaction data. Quantitative association rules denote association rules with both categorical and quantitative attributes. There have been several works on quantitative association rule mining such as the application of fuzzy techniques to quantitative association rule mining, the generalized association rule mining for quantitative association rules, and importance weight incorporation into association rule mining fer taking into account the users interest. This paper introduces a new method for generalized fuzzy quantitative association rule mining with importance weights. The method uses fuzzy concept hierarchies fer categorical attributes and generalization hierarchies of fuzzy linguistic terms fur quantitative attributes. It enables the users to flexibly perform the association rule mining by controlling the generalization levels for attributes and the importance weights f3r attributes.

데이터 큐브를 이용한 연관규칙 발견 알고리즘 (-An Algorithm for Cube-based Mining Association Rules and Application to Database Marketing)

  • 한경록;김재련
    • 산업경영시스템학회지
    • /
    • 제23권54호
    • /
    • pp.27-36
    • /
    • 2000
  • The problem of discovering association rules is an emerging research area, whose goal is to extract significant patterns or interesting rules from large databases and several algorithms for mining association rules have been applied to item-oriented sales transaction databases. Data warehouses and OLAP engines are expected to be widely available. OLAP and data mining are complementary; both are important parts of exploiting data. Our study shows that data cube is an efficient structure for mining association rules. OLAP databases are expected to be a major platform for data mining in the future. In this paper, we present an efficient and effective algorithm for mining association rules using data cube. The algorithm can be applicable to enhance the power of competitiveness of business organizations by providing rapid decision support and efficient database marketing through customer segmentation.

  • PDF

Encoding of XML Elements for Mining Association Rules

  • Hu Gongzhu;Liu Yan;Huang Qiong
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제14권3호
    • /
    • pp.37-47
    • /
    • 2005
  • Mining of association rules is to find associations among data items that appear together in some transactions or business activities. As of today, algorithms for association rule mining, as well as for other data mining tasks, are mostly applied to relational databases. As XML being adopted as the universal format for data storage and exchange, mining associations from XML data becomes an area of attention for researchers and developers. The challenge is that the semi-structured data format in XML is not directly suitable for traditional data mining algorithms and tools. In this paper we present an encoding method to encode XML tree-nodes. This method is used to store the XML data in Value Table and Transaction Table that can be easily accessed via indexing. The hierarchical relationship in the original XML tree structure is embedded in the encoding. We applied this method to association rules mining of XML data that may have missing data.

  • PDF

후보 2-항목집합의 개수를 최소화한 연관규칙 탐사 알고리즘 (An Algorithm for Mining Association Rules by Minimizing the Number of Candidate 2-Itemset)

  • 황종원;강맹규
    • 산업경영시스템학회지
    • /
    • 제21권48호
    • /
    • pp.53-63
    • /
    • 1998
  • Mining for association rules between items in a large database of sales transaction has been described as an important data mining problem. The mining of association rules can be mapped into the problem of discovering large itemsets. In this paper we present an efficient algorithm for mining association rules by minimizing the total numbers of candidate 2-itemset, │C$_2$│. More the total numbers of candidate 2-itemset, less the time of executing the algorithm for mining association rules. The total performance of algorithm depends on the time of finding large 2-itemsets. Hence, minimizing the total numbers of candidate 2-itemset is very important. We have performed extensive experiments and compared the performance of our algorithm with the DHP algorithm, the best existing algorithm.

  • PDF

하이브리드 데이터마이닝 메커니즘에 기반한 전문가 지식 추출 (Extraction of Expert Knowledge Based on Hybrid Data Mining Mechanism)

  • 김진성
    • 한국지능시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.764-770
    • /
    • 2004
  • This paper presents a hybrid data mining mechanism to extract expert knowledge from historical data and extend expert systems' reasoning capabilities by using fuzzy neural network (FNN)-based learning & rule extraction algorithm. Our hybrid data mining mechanism is based on association rule extraction mechanism, FNN learning and fuzzy rule extraction algorithm. Most of traditional data mining mechanisms are depended ()n association rule extraction algorithm. However, the basic association rule-based data mining systems has not the learning ability. Therefore, there is a problem to extend the knowledge base adaptively. In addition, sequential patterns of association rules can`t represent the complicate fuzzy logic in real-world. To resolve these problems, we suggest the hybrid data mining mechanism based on association rule-based data mining, FNN learning and fuzzy rule extraction algorithm. Our hybrid data mining mechanism is consisted of four phases. First, we use general association rule mining mechanism to develop an initial rule base. Then, in the second phase, we adopt the FNN learning algorithm to extract the hidden relationships or patterns embedded in the historical data. Third, after the learning of FNN, the fuzzy rule extraction algorithm will be used to extract the implicit knowledge from the FNN. Fourth, we will combine the association rules (initial rule base) and fuzzy rules. Implementation results show that the hybrid data mining mechanism can reflect both association rule-based knowledge extraction and FNN-based knowledge extension.

상용 데이타 마이닝 도구를 사용한 정량적 연관규칙 마이닝 (Mining Quantitative Association Rules using Commercial Data Mining Tools)

  • 강공미;문양세;최훈영;김진호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제35권2호
    • /
    • pp.97-111
    • /
    • 2008
  • 상용 데이타 마이닝 도구에서는 기본적으로 이진 속성에 대한 연관규칙 마이닝만을 지원한다. 그러나, 일반적인 트랜잭션 데이타베이스는 이진 속성 뿐 아니라 정량적 속성을 포함한다. 이에 따라, 본 논문에서는 상용 데이타 마이닝 도구를 사용하여 정량적 연관규칙을 마이닝하는 체계적인 접근법을 제안한다. 이를 위해, 우선 상용 데이타 마이닝 도구를 사용하여 정량적 연관규칙을 찾아내기 위한 전체적인 프레임워크를 제안한다. 제안한 프레임워크는 정량적 속성을 이진 속성으로 변환하는 전처리 과정과 마이닝된 이진 연관규칙을 다시 정량적 연관규칙으로 변환하는 후처리 과정으로 구성된다. 다음으로, 전처리 과정을 위한 구간 분할의 개념을 제시하고, 기존의 평균 및 중앙치 기반 양분할 기법과 동일 너비 및 동일 깊이 기반 다분할 기법을 구간 분할의 개념으로 정형적으로 재정의한다. 그런데, 이들 기존 분할 기법은 속성 값의 분포를 고려하지 않은 문제점이 있다. 본 논문에서는 이를 해결하기 위하여 표준편차 최소화 기법을 제안한다. 표준편차 최소화 기법은 이웃한 속성 값의 표준편차 변화가 작다면 동일한 구간에 포함시키고, 표준편차 변화가 크다면 다른 구간으로 분할하는 매우 직관적인 분할 기법이다. 또한, 후처리 과정으로는 이진 연관규칙들을 통합하고 이를 다시 정량적 연관규칙으로 변환하는 방법을 제안한다. 마지막으로, 다양한 실험을 통하여 제안한 프레임워크가 바르게 동작함을 보이고, 표준편차 최소화 기법이 다른 기법에 비하여 우수함을 입증한다. 이 같은 결과를 볼 때, 제안한 프레임워크는 일반 사용자가 상용 데이타 마아닝 도구를 사용하여 정량적 연간규칙을 쉽게 마이닝 할 수 있는 매우 실용적인 접근법이라 생각한다.

연관규칙과 퍼지 인공신경망에 기반한 하이브리드 데이터마이닝 메커니즘에 관한 연구 (A Study on the Hybrid Data Mining Mechanism Based on Association Rules and Fuzzy Neural Networks)

  • 김진성
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.884-888
    • /
    • 2003
  • In this paper, we introduce the hybrid data mining mechanism based in association rule and fuzzy neural networks (FNN). Most of data mining mechanisms are depended in the association rule extraction algorithm. However, the basic association rule-based data mining has not the learning ability. In addition, sequential patterns of association rules could not represent the complicate fuzzy logic. To resolve these problems, we suggest the hybrid mechanism using association rule-based data mining, and fuzzy neural networks. Our hybrid data mining mechanism was consisted of four phases. First, we used general association rule mining mechanism to develop the initial rule-base. Then, in the second phase, we used the fuzzy neural networks to learn the past historical patterns embedded in the database. Third, fuzzy rule extraction algorithm was used to extract the implicit knowledge from the FNN. Fourth, we combine the association knowledge base and fuzzy rules. Our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy logic.

  • PDF

Hybrid Intelligent Web Recommendation Systems Based on Web Data Mining and Case-Based Reasoning

  • Kim, Jin-Sung
    • 한국지능시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.366-370
    • /
    • 2003
  • In this research, we suggest a hybrid intelligent Web recommendation systems based on Web data mining and case-based reasoning (CBR). One of the important research topics in the field of Internet business is blending artificial intelligence (AI) techniques with knowledge discovering in database (KDD) or data mining (DM). Data mining is used as an efficient mechanism in reasoning for association knowledge between goods and customers' preference. In the field of data mining, the features, called attributes, are often selected primary for mining the association knowledge between related products. Therefore, most of researches, in the arena of Web data mining, used association rules extraction mechanism. However, association rules extraction mechanism has a potential limitation in flexibility of reasoning. If there are some goods, which were not retrieved by association rules-based reasoning, we can't present more information to customer. To overcome this limitation case, we combined CBR with Web data mining. CBR is one of the AI techniques and used in problems for which it is difficult to solve with logical (association) rules. A Web-log data gathered in real-world Web shopping mall was given to illustrate the quality of the proposed hybrid recommendation mechanism. This Web shopping mall deals with remote-controlled plastic models such as remote-controlled car, yacht, airplane, and helicopter. The experimental results showed that our hybrid recommendation mechanism could reflect both association knowledge and implicit human knowledge extracted from cases in Web databases.

데이터 마이닝과 퍼지인식도 기반의 인과관계 지식베이스 구축에 관한 연구 (A Study on the Development of Causal Knowledge Base Based on Data Mining and Fuzzy Cognitive Map)

  • Kim, Jin-Sung
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.247-250
    • /
    • 2003
  • Due to the increasing use of very large databases, mining useful information and implicit knowledge from databases is evolving. However, most conventional data mining algorithms identify the relationship among features using binary values (TRUE/FALSE or 0/1) and find simple If-THEN rules at a single concept level. Therefore, implicit knowledge and causal relationships among features are commonly seen in real-world database and applications. In this paper, we thus introduce the mechanism of mining fuzzy association rules and constructing causal knowledge base form database. Acausal knowledge base construction algorithm based on Fuzzy Cognitive Map(FCM) and Srikant and Agrawal's association rule extraction method were proposed for extracting implicit causal knowledge from database. Fuzzy association rules are well suited for the thinking of human subjects and will help to increase the flexibility for supporting users in making decisions or designing the fuzzy systems. It integrates fuzzy set concept and causal knowledge-based data mining technologies to achieve this purpose. The proposed mechanism consists of three phases: First, adaptation of the fuzzy membership function to the database. Second, extraction of the fuzzy association rules using fuzzy input values. Third, building the causal knowledge base. A credit example is presented to illustrate a detailed process for finding the fuzzy association rules from a specified database, demonstration the effectiveness of the proposed algorithm.

  • PDF