• 제목/요약/키워드: Association Rule Algorithm

검색결과 138건 처리시간 0.024초

하이브리드 데이터마이닝 메커니즘에 기반한 전문가 지식 추출 (Extraction of Expert Knowledge Based on Hybrid Data Mining Mechanism)

  • 김진성
    • 한국지능시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.764-770
    • /
    • 2004
  • This paper presents a hybrid data mining mechanism to extract expert knowledge from historical data and extend expert systems' reasoning capabilities by using fuzzy neural network (FNN)-based learning & rule extraction algorithm. Our hybrid data mining mechanism is based on association rule extraction mechanism, FNN learning and fuzzy rule extraction algorithm. Most of traditional data mining mechanisms are depended ()n association rule extraction algorithm. However, the basic association rule-based data mining systems has not the learning ability. Therefore, there is a problem to extend the knowledge base adaptively. In addition, sequential patterns of association rules can`t represent the complicate fuzzy logic in real-world. To resolve these problems, we suggest the hybrid data mining mechanism based on association rule-based data mining, FNN learning and fuzzy rule extraction algorithm. Our hybrid data mining mechanism is consisted of four phases. First, we use general association rule mining mechanism to develop an initial rule base. Then, in the second phase, we adopt the FNN learning algorithm to extract the hidden relationships or patterns embedded in the historical data. Third, after the learning of FNN, the fuzzy rule extraction algorithm will be used to extract the implicit knowledge from the FNN. Fourth, we will combine the association rules (initial rule base) and fuzzy rules. Implementation results show that the hybrid data mining mechanism can reflect both association rule-based knowledge extraction and FNN-based knowledge extension.

연관규칙과 퍼지 인공신경망에 기반한 하이브리드 데이터마이닝 메커니즘에 관한 연구 (A Study on the Hybrid Data Mining Mechanism Based on Association Rules and Fuzzy Neural Networks)

  • 김진성
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.884-888
    • /
    • 2003
  • In this paper, we introduce the hybrid data mining mechanism based in association rule and fuzzy neural networks (FNN). Most of data mining mechanisms are depended in the association rule extraction algorithm. However, the basic association rule-based data mining has not the learning ability. In addition, sequential patterns of association rules could not represent the complicate fuzzy logic. To resolve these problems, we suggest the hybrid mechanism using association rule-based data mining, and fuzzy neural networks. Our hybrid data mining mechanism was consisted of four phases. First, we used general association rule mining mechanism to develop the initial rule-base. Then, in the second phase, we used the fuzzy neural networks to learn the past historical patterns embedded in the database. Third, fuzzy rule extraction algorithm was used to extract the implicit knowledge from the FNN. Fourth, we combine the association knowledge base and fuzzy rules. Our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy logic.

  • PDF

T-알고리즘을 이용한 연관규칙의 효과적인 감축 (An Effective Reduction of Association Rules using a T-Algorithm)

  • 박진희;정환묵
    • 한국지능시스템학회논문지
    • /
    • 제19권2호
    • /
    • pp.285-290
    • /
    • 2009
  • 데이터에 숨겨진 패턴을 탐색하는 데이터마이닝에서 가장 많은 연구가 이루어진 분야가 연관규칙 마이닝이다. 연관규칙 마이닝에서는 방대한 수의 트랜잭션 데이터를 다루게 되므로 고속처리 방식의 실현이 중요한 과제가 되고 있다. 그리고 연관규칙 탐사기법에서 규칙을 도출하는데 소요되는 시간은 데이터에 포함되어 있는 항목의 수에 비례하여 기하급수적으로 늘어나기 때문에 규칙의 수를 줄이는 과정이 필연적으로 요구된다. 본 논문에서는 트랜잭션 데이터 항목들을 이진형식으로 비교하여 연관성 규칙의 수를 효과적으로 감축할 수 있고 항목간의 지지도와 신뢰도를 함께 향상 시킬 수 있는 T-알고리즘을 제안하고 시뮬래이션을 통하여 확인하였다.

네트워크 침입 탐지를 위한 Coverage와 Exclusion 기반의 새로운 연관 규칙 마이닝 (A New Association Rule Mining based on Coverage and Exclusion for Network Intrusion Detection)

  • 김태연;한경현;황성운
    • 사물인터넷융복합논문지
    • /
    • 제9권1호
    • /
    • pp.77-87
    • /
    • 2023
  • 네트워크 침입 탐지 작업에 다양한 연관 규칙 마이닝 알고리즘을 적용하는 데에는 두 가지 중요한 문제가 있다. 생성된 규칙 집합의 크기가 너무 커서 IoT 시스템에서 활용하기 어렵고, 거짓 부정/긍정 비율을 제어하기 어렵다. 본 연구에서는 coverage와 exclusion이라는 새로 정의된 척도에 기반을 둔 연관 규칙 마이닝 알고리즘을 제안한다. Coverage는 한 클래스의 트랜잭션에서 패턴이 발견되는 빈도를 나타내고, exclusion은 다른 클래스의 트랜잭션에서 패턴이 발견되지 않는 빈도를 나타낸다. 우리는 KDDcup99라는 공개 데이터 세트를 사용하여 가장 유명한 알고리즘인 Apriori 알고리즘과 실험적으로 제안된 알고리즘을 비교한다. Apriori와 비교하여 제안된 알고리즘은 정확도를 완전히 유지하면서 생성되는 규칙 집합 크기를 최대 93.2%까지 줄인다. 또한, 제안된 알고리즘은 생성된 규칙의 거짓 부정/긍정 비율을 매개변수별로 완벽하게 제어한다. 따라서 네트워크 분석가는 두 가지 문제를 해결함으로써 제안한 연관 규칙 마이닝을 네트워크 침입 탐지 작업에 효과적으로 적용할 수 있다.

사용자 웹 사이트 방문 시간을 고려한 연관 규칙 (Association Rule by Considering Users Web Site Visiting Time)

  • 강형창;김철수;이동철
    • 산업경영시스템학회지
    • /
    • 제29권2호
    • /
    • pp.104-109
    • /
    • 2006
  • We can offer suitable information to users analyzing the pattern of users. An association rule is one of data mining techniques which can discover the pattern. We use an association rule which considers the web page visiting time and we should the pattern analyse of users. The offered method puts the weights in Web page visiting time of the user and produces an association rule. Weight is web page visiting time unit divide to total of web page visiting time. We offer rather meaningful result the association rule by Apriori algorithm. This method that proposes in the paper offers rather meaningful result Apriori algorithm

전략적 중요도를 고려한 연관규칙의 발견: WARM (Association Rule Discovery Considering Strategic Importance: WARM)

  • 최덕원
    • 정보처리학회논문지D
    • /
    • 제17D권4호
    • /
    • pp.311-316
    • /
    • 2010
  • 본 논문은 가중치를 고려한 연관규칙탐사 알고리즘(WARM)을 제시한다. 각 전략적 요소항목에 가중치를 부여하는 것과, 각 전략요소 항목별로 원시 자료값을 정규화하는 것이 이 논문에서 제시하는 알고리즘의 중요한 내용을 구성하고 있다. 본 논문은 TSAA 알고리즘을 확장 발전 시킨 연구로서 전략적 중요도를 반영하는 항목으로는 각 품목의 이익기여도, 마케팅 가치, 고객만족도 등을 사용하였다. 한 대형할인점의 실제 거래자료를 사용하여 알고리즘의 성능을 검사하였으며, Apriori, TSAA 및 WARM의 세 가지 알고리즘을 사용한 탐사결과를 비교 분석하였다. 분석의 결과 세 가지 알고리즘은 연관분석 행태에 있어서 각각 독특한 탐사행태를 보이는 것으로 나타났다.

전략적 중요도를 고려한 연관규칙 탐사 (Association Rule Mining Considering Strategic Importance)

  • 최덕원;신진규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.443-446
    • /
    • 2007
  • A new association rule mining algorithm, which reflects the strategic importance of associative relationships between items, was developed and presented in this paper. This algorithm exploits the basic framework of Apriori procedures and TSAA(transitive support association Apriori) procedure developed by Hyun and Choi in evaluating non-frequent itemsets. The algorithm considers the strategic importance(weight) of feature variables in the association rule mining process. Sample feature variables of strategic importance include: profitability, marketing value, customer satisfaction, and frequency. A database with 730 transaction data set of a large scale discount store was used to compare and verify the performance of the presented algorithm against the existing Apriori and TSAA algorithms. The result clearly indicated that the new algorithm produced substantially different association itemsets according to the weights assigned to the strategic feature variables.

함축적 지식 영역에서 부 연관규칙의 발견 (Finding Negative Association Rules in Implicit Knowledge Domain)

  • 박양재
    • 정보학연구
    • /
    • 제9권3호
    • /
    • pp.27-32
    • /
    • 2006
  • If is interested and create rule between it in item that association rules buys, by negative association rules is interested to item that do not buy, it is attempt to do data Maining more effectively. It is difficult that existent methods to find negative association rules find one part of rule, or negative association rules because use more complicated algorithm than algorithm that find association rules. Therefore, this paper presents method to create negative association rules by simpler process using Boolean Analyzer that use dependency between items. And as Boolean Analyzer through an experiment, show that can find negative association rules and more various rule through comparison with other algorithm.

  • PDF

연관규칙과 순차패턴을 이용한 프로세스 마이닝 (A Process Mining using Association Rule and Sequence Pattern)

  • 정소영;권수태
    • 산업경영시스템학회지
    • /
    • 제31권2호
    • /
    • pp.104-111
    • /
    • 2008
  • A process mining is considered to support the discovery of business process for unstructured process model, and a process mining algorithm by using the associated rule and sequence pattern of data mining is developed to extract information about processes from event-log, and to discover process of alternative, concurrent and hidden activities. Some numerical examples are presented to show the effectiveness and efficiency of the algorithm.

연관규칙을 이용한 상품선택과 기대수익 예측 (Item Selection By Estimated Profit Ranking Based on Association Rule)

  • 황인수
    • Asia pacific journal of information systems
    • /
    • 제14권4호
    • /
    • pp.87-97
    • /
    • 2004
  • One of the most fundamental problems in business is ranking items with respect to profit based on historical transactions. The difficulty is that the profit of one item comes from its influence on the sales of other items as well as its own sales, and that there is no well-developed algorithm for estimating overall profit of selected items. In this paper, we developed a product network based on association rule and an algorithm for profit estimation and item selection using the estimated profit ranking(EPR). As a result of computer simulation, the suggested algorithm outperforms the individual approach and the hub-authority profit ranking algorithm.