• Title/Summary/Keyword: Assistive Walking System

Search Result 40, Processing Time 0.017 seconds

Development of Body-Weight-Support System for Walking Rehabilitation (보행 재활을 위한 신체 자중 보상용 모바일 로봇에 관한 연구)

  • Suh, Seung-Whan;Yu, Seung-Nam;Lee, Sang-Ho;Han, Chang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3658-3665
    • /
    • 2010
  • As the population of elderly people and disabled people are increased, various demands for human welfare using robot system are raised. Especially autonomous rehabilitation system using robot could reduce the human effort while maintaining the its intrinsic efficacy. This study deals with mobile gait rehabilitation system which combined with BWS (Body Weight Support) for training of elderly and handicapped people who suffer the muscle force weakness of lower extremity. BWS which is designed by kinematic analysis of body lifting characteristics and walking guide system are integrated with main control system and wheeled platform. This mobile platform is operated by UCS (User Command System) and autonomous trajectory planning algorithm. Finally, through the EMG (Electromyography) signal measuring and its analysis for subject, performance and feasibility of developed system is verified.

Development of Walking Assistive System using Body Weight Supporting and Path Planning Strategy (인체 자중 보상 및 로봇 경로계획법을 이용한 이동형 보행 재활 시스템 개발)

  • Yu, Seung-Nam;Shon, Woong-Hee;Suh, Seung-Whan;Lee, Sang-Ho;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.939-947
    • /
    • 2010
  • With the rising numbers of elderly and disabled people, the demand for welfare services using a robotic system and not involving human effort is likewise increasing. This study deals with a mobile-robot system combined with a BWS (Body Weight Support) system for gait rehabilitation. The BWS system is designed via the kinematic analysis of the robot's body-lifting characteristics and of the walking guide system that controls the total rehabilitation system integrated in the mobile robot. This mobile platform is operated by utilizing the AGV (Autonomous Guided Vehicle) driving algorithm. Especially, the method that integrates geometric path tracking and obstacle avoidance for a nonholonomic mobile robot is applied so that the system can be operated in an area where the elderly users are expected to be situated, such as in a public hospital or a rehabilitation center. The mobile robot follows the path by moving through the turning radius supplied by the pure-pursuit method which is one of the existing geometric path-tracking methods. The effectiveness of the proposed method is verified through the real experiments those are conducted for path tracking with static- and dynamic-obstacle avoidance. Finally, through the EMG (Electromyography) signal measurement of the subject, the performance of the proposed system in a real operation condition is evaluated.

Evaluation of Intralimb Coordination in Transfemoral Amputee during Level Walking (대퇴절단인의 보행 시 하지 내 협응성 평가)

  • Chang, Yoon-hee;Jeong, Bo-ra;Kang, Sung-jae;Ryu, Jei-cheong;Mun, Mu-seong;Ko, Chang-Yong
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.2
    • /
    • pp.147-153
    • /
    • 2016
  • The aims of this study were to evaluate the joint coordination between hip and knee joints in the transfemoral amputees, and its symmetry between sound and prosthetic limbs. Seven transfemoral amputees ($46.4{\pm}10.7-year-old$, $174.8{\pm}3.5cm$, $78.3{\pm}9.7kg$) and 7 able bodies ($24.0{\pm}4.5-year-old$, $174.5{\pm}5.9cm$, $66.9{\pm}9.4Kg$) participated in this study. They walked at a self-selected walking speed across a 10m level ground. Simultaneously angle and angular velocity in the hip and knee joint were measured by motion analysis system. Then continuos relative phase(CRP), standard deviations of CRP (CRP_SD) and symmetry index(SI) were calculated. In able bodies, there were no differences of the parameters between left and right limb(all p>0.05). However, significant differences between sound and prosthetic limb in most of the parameters, except for CRP for stance phase were shown (all p<0.05). There were differences in all SI between transfemoral amputees and able bodies (p<0.05). In conclusion, joint coordination was altered in transfemoral amputee during level walking and shown in interlimb asymmetry.

A Study of Gait Imbalance Determination System based on Encoder, Accelerometer and EMG sensors (인코더, 가속도, 근전도 센서 기반의 보행불균형 판단 시스템 연구)

  • Park, Yong-Deok;Kim, Sang-Kyun;Kwon, Jang-Woo;Lee, Sang-Min
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.2
    • /
    • pp.155-162
    • /
    • 2016
  • The purpose of this study was to determine the walking imbalance using the EMG(electromyogram). To confirm the effectiveness of the proposed encoder and acceleration, EMG sensor based gait imbalance determination system. This experiment was carried out to evaluation with a healthy adult male to 10 people. The Encoder device is attached to the hip and knee joint in order to measure the gait signal. The Accelerometer sensors are attached on the ankle. The EMG sensors are attached on the vastus lateralis and anterior tibialis. SI(Symmetry Index) was used as an index for determining the gait imbalance. To confirm if the judgment has been made correctly, the heel, regarded as the cause of unbalanced ambulation, was adjusted from 0 cm to 6 cm with intervals of 1.5 cm. In the cases of the encoder and the EMG, the difference of 0 cm and 1.5 cm is determined into normal walk but the other difference is distinguished into gait imbalance. In the case of the accelerometer, the difference of 0 cm, 1.5 cm and 3 cm is determined into normal walk but the other difference is distinguished into gait imbalance.

Analysis of the Characteristics of Ground Reaction Force According to the Level of Knee Osteoarthritis During Gait (보행 시 농작업 종사자들의 슬관절 퇴행성 등급에 따른 지면반력 특성 분석)

  • Lee, Kyung-Ill;Lee, Chul-Gab;Hong, Wan-Ki;Kim, Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.393-399
    • /
    • 2015
  • Objective : This study was conducted with an aim to use it as basic data for developing assistive devices, such as insoles that can suppress the progress of degenerative diseases and strategies, to improve early degenerative diseases by assessing walking characteristics of farm workers who were classified as KL-grade in the perspective of motor mechanics. Method : 38 male and female adults who complained of knee joint pain for more than six months were selected, and they were classified according to KL-grade. KL-grade was assessed by an orthopaedic specialist and an occupational environment health specialist. Filming equipment (FX-1, CASIO, Japan) and a ground reaction force system (AMTI OR6, AMTI, USA) were used to identify ground reaction force characteristics, and WOMAC was used for a pain rating scale. Results : There was a difference between the right and left side (axis-X) according to KL-grade, and when the grade was higher, the internal ground reaction force was also higher. Changes in COP were not affected by KL-grade of the knee joint, but it tended to increase as the grade increased. There were differences in the time required for limb support while walking according to the grades, and when the grade was higher, walking was more inefficient with long braking force and short propulsion forces. Also, pain rating scale, the right and left side, and COP changes while in support phase were related. Conclusion : There was a partial, statically significant difference in KL-grade and ground reaction force occurring during the support phase, and there were differences in ground reaction forces according to the grades of degenerative arthritis in the knee joint, indicating that this study is worthy as basic data for future studies.

Muscle Stiffness based Intent Recognition Method for Controlling Wearable Robot (착용형 로봇을 제어하기 위한 근경도 기반의 의도 인식 방법)

  • Yuna Choi;Junsik Kim;Daehun Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.496-504
    • /
    • 2023
  • This paper recognizes the motion intention of the wearer using a muscle stiffness sensor and proposes a control system for a wearable robot based on this. The proposed system recognizes the onset time of the motion using sensor data, determines the assistance mode, and provides assistive torque to the hip flexion/extension motion of the wearer through the generated reference trajectory according to the determined mode. The onset time of motion was detected using the CUSUM algorithm from the muscle stiffness sensor, and by comparing the detection results of the onset time with the EMG sensor and IMU, it verified its applicability as an input device for recognizing the intention of the wearer before motion. In addition, the stability of the proposed method was confirmed by comparing the results detected according to the walking speed of two subjects (1 male and 1 female). Based on these results, the assistance mode (gait assistance mode and muscle strengthening mode) was determined based on the detection results of onset time, and a reference trajectory was generated through cubic spline interpolation according to the determined assistance mode. And, the practicality of the proposed system was also confirmed by applying it to an actual wearable robot.

Development of Street Crossing Assistive Embedded System for the Visually-Impaired Using Machine Learning Algorithm (머신러닝을 이용한 시각장애인 도로 횡단 보조 임베디드 시스템 개발)

  • Oh, SeonTaek;Jeong, Kidong;Kim, Homin;Kim, Young-Keun
    • Journal of the HCI Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.41-47
    • /
    • 2019
  • In this study, a smart assistive device is designed to recognize pedestrian signal and to provide audio instructions for visually impaired people in crossing streets safely. Walking alone is one of the biggest challenges to the visually impaired and it deteriorates their life quality. The proposed device has a camera attached on a pair of glasses which can detect traffic lights, recognize pedestrian signals in real-time using a machine learning algorithm on GPU board and provide audio instructions to the user. For the portability, the dimension of the device is designed to be compact and light but with sufficient battery life. The embedded processor of device is wired to the small camera which is attached on a pair of glasses. Also, on inner part of the leg of the glasses, a bone-conduction speaker is installed which can give audio instructions without blocking external sounds for safety reason. The performance of the proposed device was validated with experiments and it showed 87.0% recall and 100% precision for detecting pedestrian green light, and 94.4% recall and 97.1% precision for detecting pedestrian red light.

Immediate Effect of Fabric Ankle-Foot Orthosis on Spatiotemporal Gait Parameters in Children With Spastic Cerebral Palsy (패브릭 발목 보조기가 경직성 뇌성마비 아동의 시공간적 보행 변수에 미치는 즉각적인 효과)

  • Sim, Yon-Ju;Lee, Dong-Ryul;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.21 no.1
    • /
    • pp.29-36
    • /
    • 2014
  • The purpose of this study was to investigate the immediate effect of fabric ankle-foot orthosis on spatiotemporal gait parameters, compared to a barefoot condition in children with spastic cerebral palsy. Eleven children with spastic cerebral palsy participated in this study. Spatiotemporal gait parameters were measured with the GAITRite system. Fabric ankle-foot orthosis significantly improved Timed Up and Go test time and gait velocity. There was no significant difference in cadence. The step time significantly improved in both the more and less affected foot compared to the barefoot condition. The step length of the affected foot also significantly improved, but there was no significant difference in the step length of the less affected foot. There was significant improvement in the stride length of both the affected and less affected foot, but no significant difference in single stance or double stance. The fabric ankle-foot orthosis could improve stability, and selective control of the joint and promote better walking in children with cerebral palsy. Consequently, the fabric ankle-foot orthosis might be an alternative assistive device for neurological populations as a primary role instead of the typical ankle-foot orthosis.

Control Algorithm of the Lower-limb Powered Exoskeleton Robot using an Intention of the Human Motion from Muscle (인체근육의 동작의도를 이용한 하지 근력증강형 외골격 로봇의 제어 알고리즘)

  • Lee, Hee-Don;Kim, Wan-Soo;Lim, Dong-Hwan;Han, Chang-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.124-131
    • /
    • 2017
  • This paper present a novel approach to control the lower body power assistive exoskeleton system of a HEXAR-CR35 aimed at improving a muscular strength. More specifically the control of based on the human intention is crucial of importance to ensure intuitive and dexterous motion with the human. In this contribution, we proposed the detection algorithm of the human intention using the MCRS which are developed to measure the contraction of the muscle with variation of the circumference. The proposed algorithm provides a joint motion of exoskeleton corresponding the relate muscles. The main advantages of the algorithm are its simplicity, computational efficiency to control one joint of the HEXAR-CR35 which are consisted knee-active type exoskeleton (the other joints are consisted with the passive or quasi-passive joints that can be arranged by analyzing of the human joint functions). As a consequence, the motion of exoskeleton is generated according to the gait phase: swing and stance phase which are determined by the foot insole sensors. The experimental evaluation of the proposed algorithm is achieved in walking with the exoskeleton while carrying the external mass in the back side.

The Effect of 3-D Spine Stabilization Training on Trunk Muscle Strength and Body Composition in Elderly (3차원 척추 안정화 운동이 고령자의 체간 근력 및 신체구성에 미치는 효과)

  • Seo, S.B.;Kim, D.H.;Jung, H.C.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.1
    • /
    • pp.45-51
    • /
    • 2015
  • This study was to verify effect on muscle strength of trunk and body composition for elderly according to spinal stability exercise with three dimension. We recruited forty elderly participants(twenties as training group, the other twenties as control group) over sixty five aged. The participant performed muscle strength estimation to exercise of eight direction using spinal stability training system. Also, we estimated body composition in participants using inbody 720. Trining group performed direction exercise(F, FOR, R, BOR, B, BOL, L, FOL) and multiple exercise with band exercise, strengthening gym and walking during thirty minute. But control group only performed multiple exercise without direction exercise. All training progressed three days a week for eight weeks. The results showed that muscle strength of trunk in training group increased significantly from 79.9 point to 85.6 point with reducement of body weight, body fat and BMI. However, control group showed a few exercise effect with increasement of amount of muscles and reducement of body fat without muscle strength of trunk. These results means that spinal stability exercise could be helped to prevent obey and fall of elderly caused by muscle strengthening and improving body composition. This could be applied to develop rehabilitation program efficiently based these data.

  • PDF