• Title/Summary/Keyword: Asset

Search Result 2,278, Processing Time 0.031 seconds

Study on Genealogical Character of Buddhist Dances of Hang Yeon Suk and Lee Mae Bang (한영숙류와 이매방류 승무의 계통적 성향 연구)

  • Jeong, Seong Suk
    • (The) Research of the performance art and culture
    • /
    • no.23
    • /
    • pp.185-212
    • /
    • 2011
  • Buddhist dance (seungmu) is a crux and highlight of Korean traditional dance; its aesthetics and technique are extraordinary, and Korean dance's unique style is well expressed. The Buddhist dance, which has been descended, is divided into Han Yeong Suk style, which is designated as Important Intangible Asset Number 27, and Lee Mae Bang style. While the two dances are same one, area is difference and they have unique style because of genealogical difference. However, studies on Buddhist dance so far have focused on single style's dance, or comparison of regional aspects (Han Yeong Suk dance is from Gyeonggi and Lee Mae Bang dance is from Honam area). But, Lee Byeong Ok suggested traditional artist dance is differed by male dance genealogy and female dance (gibang) genealogy dance, and while folk dance has storng tie with region, but artist dance has weak regional tie. Therefore, the purpose of this thesis is to study genealogical character of Buddhist dance's dancing style, clarifying Han Yeong Suk dance is male dance genealogy and Lee Mae Bang dance is gibang dance genealogy. In other words, among three theses that compared Lee Mae Bang and Han Yeong Suk dances, one analyzing movement, one comparing dance of invocation and one comparing traditional ballad, are re-analyzed from genealogical perspective and characteristics are comparatively analzyed. The overall summary of the genealogical attitude of the Han Yeong Suk and Lee Mae Ban dances is; First, Han's dance has masculinity, upwardness, progressiveness, activeness, outgoing character, boldness and grace, which are character of male dance lineage, while Lee's dance shows feminity, downwardness, backwardness, aesthecity, inwardness, delicacy and coquette. Second, the most expressed parts of the attitude of two dances are genealogical character, and then are original and regional characters. Third, two dances have strong genealogical attitude, but also has anti-genealogical attitude since the gender of descendent was changed, in other words Lee Mae Bang was man, and Han Yeong Suk was woman. Fourth, even though the two Buddhist dances have different genealogy and region, they share similarities as traditional dance descended in the same time period, so there are many common features. In other words, the two dances are Korean nation's dance and from same time period, but they should not be mixed, either. Even though they have small differences, they must keep each genealogy and descend to the next generation.

The Effect of Interest Rate Variability on Housing Prices (이자율 변동이 주택가격에 미치는 영향)

  • Han, Myung-hoon
    • Journal of Venture Innovation
    • /
    • v.5 no.3
    • /
    • pp.71-80
    • /
    • 2022
  • The real estate market is an important part of a country's economy and plays a major role in economic growth through the growth of many related industries. Changes in interest rates affect asset prices and have a significant impact on housing prices. This study analyzed housing prices by dividing them into nationwide, local, and Seoul housing prices in order to analyze whether the effect of changes in interest rates on housing prices shows regional differences. The analysis was conducted from the first quarter of 2011 to the fourth quarter of 2021, and was analyzed using the DOLS model. The main analysis results are as follows. First, interest rates were found to have a significant negative effect on national housing prices, and a drop in interest rates significantly increased national housing prices and an increase in interest rates significantly lowered national housing prices. The consumer price index and loan growth rate also had a positive effect on housing prices nationwide, but statistical significance was not high. Second, interest rates had a negative effect on local housing prices, unlike national housing prices, but were not statistically significant. On the other hand, it was found that the consumer price index and loan growth rate had a larger and significant positive effect on local housing prices compared to national housing prices. Finally, it was found that the interest rate had the only significant negative effect on housing prices in Seoul. And this effect was greater and more significant than the effect on national and local housing prices. In the end, it was found that the effect of interest rates on Korean housing prices differs locally. Interest rates have a significant negative effect on national housing prices, and local housing prices, but they are not statistically significant. In addition, the interest rate was found to have the largest and most significant negative effect on housing prices in Seoul. In addition, it was found that there was a difference in the effect of macroeconomic variables on housing prices. This means that there are differences between regions with different factors influencing local and Seoul housing prices, and this point should be considered when drafting and implementing real estate policies.

The Impact of Social Capital and Laboratory Startup Team Diversity on Startup Performance Based on a Network Perspective: Focusing on the I-Corps Program (네트워크 관점에 기반한 사회적 자본 및 실험실 창업팀 다양성이창업 성과에 미치는 영향: I-Corps program을 중심으로)

  • Lee, Jai Ho;Sohn, Youngwoo;Han, Jung Wha;Lee, Sang-Myung
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.6
    • /
    • pp.173-189
    • /
    • 2023
  • As supreme technologies continue to be developed, industries such as artificial intelligence, biotechnology, robots, aerospace, electric vehicles, and solar energy are created, and the macro business environment is rapidly changing. Due to these large-scale changes and increased complexity, it is necessary to pay attention to the effect of social capital, which can create new value by utilizing capital increasing the importance of relationships rather than technology or asset ownership itself at the level of start-up strategy. Social capital is a concept first proposed by Hanifan in 1916, and refers to the overall sum of capabilities or resources that are latent or available for use in mutual, continuous, organic relationships or accumulated human relationship networks between individuals or social members. In addition, the diversity of start-up teams with diverse backgrounds, characteristics, and capabilities, rather than one exceptional founder, has been emphasized. Founding team diversity refers to the diversity of in-depth factors such as demographic factors, beliefs, and values of the founding team. In addition, changes in the macro environment are emphasizing the importance of technology start-ups and laboratory start-ups that lead industrial innovation and create the nation's core growth engines. This study focused on the I-Corps' program. I-Corps, which means innovation corps, is a laboratory startup program launched by the National Research Foundation (NSF) in 2011 to encourage entrepreneurship and commercialization of research results. It focuses on forming a startup team involving professors, researchers and market discovery activities. Taking these characteristics into account, this study empirically verified the impact of social capital from a network perspective and founding team diversity on I-Corps start-up performance. As a result of the analysis, the educational diversity of the founding team had a negative (-) effect on the financial performance of the founding team. On the other side, the gender diversity and the cognitive dimension of social capital had a positive (+) effect on the financial performance of the founding team. This study is expected to provide more useful theoretical and practical implications regarding the diversity, social capital, and performance interpretation of the I-Corps Lab startup team.

  • PDF

The Development and Validation of a Core Competency Scale for Startup Talent : Focusing on ICT Sector Employees (스타트업 핵심인재 역량 척도 개발 및 타당화 : 정보통신기술(ICT)분야 종사자를 대상으로)

  • Han, Chae-yeon;Ha, Gyu-young
    • Journal of Venture Innovation
    • /
    • v.7 no.3
    • /
    • pp.183-228
    • /
    • 2024
  • This study aimed to develop a competency evaluation scale tailored to the specific needs of key talent in the ICT startup sector. Existing competency assessment tools are mostly designed for environments in large corporations or traditional small and medium-sized enterprises, failing to adequately reflect the dynamic requirements of rapidly evolving startups. For startups, where a small number of individuals directly impact company success, key talent is a critical asset. Accordingly, this study sought to create a scale that measures the competencies suited to the challenges and opportunities faced by startups, helping domestic startups establish more effective talent management strategies. The research initially selected 71 items through a literature review and in-depth interviews. Based on expert feedback that emphasized the need for more precise and clear descriptions, the item descriptions were revised, and a total of 65 items were developed through four rounds of content validation. Following preliminary and main surveys, a final set of 58 items was developed. The main survey conducted further factor analysis based on the three broad competency factors?knowledge, skills, and attitude?identified in the preliminary survey. As a result, 10 latent factors emerged: 6 items for task comprehension, 6 items for practical experience (tacit knowledge), 6 items for collaboration, 9 items for management and problem-solving, 9 items for practical skills, 4 items for self-direction, 5 items for goal orientation, 5 items for adaptability, 5 items for relationship orientation, and 3 items for organizational loyalty. The developed scale comprehensively covers the multifaceted nature of competencies, allowing for a thorough evaluation of essential skills such as technical ability, teamwork, innovation, and leadership, which are critical for startups. Therefore, the scale provides a tool that helps startup managers objectively and accurately assess candidates' competencies. It also supports the growth of employees within startups, maximizing the overall organizational performance. By utilizing this tool, startups can build a strong internal talent pool and continuously enhance employees' competencies, thereby strengthening organizational competitiveness. In conclusion, the competency evaluation scale developed in this study is a customized tool that aligns with the characteristics of startups and plays a crucial role in securing sustainable competitiveness in rapidly changing market environments. Additionally, it offers practical guidance to support the successful growth of domestic startups and help them maintain their competitive edge in the market, contributing to the development of the startup ecosystem and the growth of the national economy.

A Study on the Change of Cyber Attacks in North Korea (북한의 사이버 공격 변화 양상에 대한 연구)

  • Chanyoung Park;Hyeonsik Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.175-181
    • /
    • 2024
  • The U.N. Security Council's North Korea Sanctions Committee estimated that the amount of North Korea's cyberattacks on virtual asset-related companies from 2017 to 2023 was about 4 trillion won. North Korea's cyberattacks have secured funds through cryptocurrency hacking as it has been restricted from securing foreign currency due to economic sanctions by the international community, and it also shows the form of technology theft against defense companies, and illegal assets are being used to maintain the Kim Jong-un regime and develop nuclear and missile development. When North Korea conducted its sixth nuclear test on September 3, 2017, and declared the completion of its national nuclear armament following the launch of an intercontinental ballistic missile on November 29 of the same year, the U.N. imposed sanctions on North Korea, which are considered the strongest economic sanctions in history. In these difficult economic situations, North Korea tried to overcome the crisis through cyberattacks, but as a result of analyzing the changes through the North's cyber attack cases, the strategic goal from the first period from 2009 to 2016 was to verify and show off North Korea's cyber capabilities through the neutralization of the national network and the takeover of information, and was seen as an intention to create social chaos in South Korea. When foreign currency earnings were limited due to sanctions against North Korea in 2016, the second stage seized virtual currency and secured funds to maintain the Kim Jong-un regime and advance nuclear and missile development. The third stage is a technology hacking of domestic and foreign defense companies, focusing on taking over key technologies to achieve the five strategic weapons tasks proposed by Chairman Kim Jong-un at the 8th Party Congress in 2021. At the national level, security measures for private companies as well as state agencies should be established against North Korea's cyberattacks, and measures for legal systems, technical problems, and budgets related to science are urgently needed. It is also necessary to establish a system and manpower to respond to the ever-developing cyberattacks by focusing on cultivating and securing professional manpower such as white hackers.

A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection (입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구)

  • Lee, Jong-sik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.147-168
    • /
    • 2017
  • There have been many studies on accurate stock market forecasting in academia for a long time, and now there are also various forecasting models using various techniques. Recently, many attempts have been made to predict the stock index using various machine learning methods including Deep Learning. Although the fundamental analysis and the technical analysis method are used for the analysis of the traditional stock investment transaction, the technical analysis method is more useful for the application of the short-term transaction prediction or statistical and mathematical techniques. Most of the studies that have been conducted using these technical indicators have studied the model of predicting stock prices by binary classification - rising or falling - of stock market fluctuations in the future market (usually next trading day). However, it is also true that this binary classification has many unfavorable aspects in predicting trends, identifying trading signals, or signaling portfolio rebalancing. In this study, we try to predict the stock index by expanding the stock index trend (upward trend, boxed, downward trend) to the multiple classification system in the existing binary index method. In order to solve this multi-classification problem, a technique such as Multinomial Logistic Regression Analysis (MLOGIT), Multiple Discriminant Analysis (MDA) or Artificial Neural Networks (ANN) we propose an optimization model using Genetic Algorithm as a wrapper for improving the performance of this model using Multi-classification Support Vector Machines (MSVM), which has proved to be superior in prediction performance. In particular, the proposed model named GA-MSVM is designed to maximize model performance by optimizing not only the kernel function parameters of MSVM, but also the optimal selection of input variables (feature selection) as well as instance selection. In order to verify the performance of the proposed model, we applied the proposed method to the real data. The results show that the proposed method is more effective than the conventional multivariate SVM, which has been known to show the best prediction performance up to now, as well as existing artificial intelligence / data mining techniques such as MDA, MLOGIT, CBR, and it is confirmed that the prediction performance is better than this. Especially, it has been confirmed that the 'instance selection' plays a very important role in predicting the stock index trend, and it is confirmed that the improvement effect of the model is more important than other factors. To verify the usefulness of GA-MSVM, we applied it to Korea's real KOSPI200 stock index trend forecast. Our research is primarily aimed at predicting trend segments to capture signal acquisition or short-term trend transition points. The experimental data set includes technical indicators such as the price and volatility index (2004 ~ 2017) and macroeconomic data (interest rate, exchange rate, S&P 500, etc.) of KOSPI200 stock index in Korea. Using a variety of statistical methods including one-way ANOVA and stepwise MDA, 15 indicators were selected as candidate independent variables. The dependent variable, trend classification, was classified into three states: 1 (upward trend), 0 (boxed), and -1 (downward trend). 70% of the total data for each class was used for training and the remaining 30% was used for verifying. To verify the performance of the proposed model, several comparative model experiments such as MDA, MLOGIT, CBR, ANN and MSVM were conducted. MSVM has adopted the One-Against-One (OAO) approach, which is known as the most accurate approach among the various MSVM approaches. Although there are some limitations, the final experimental results demonstrate that the proposed model, GA-MSVM, performs at a significantly higher level than all comparative models.

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

Brand Equity and Purchase Intention in Fashion Products: A Cross-Cultural Study in Asia and Europe (상표자산과 구매의도와의 관계에 관한 국제비교연구 - 아시아와 유럽의 의류시장을 중심으로 -)

  • Kim, Kyung-Hoon;Ko, Eun-Ju;Graham, Hooley;Lee, Nick;Lee, Dong-Hae;Jung, Hong-Seob;Jeon, Byung-Joo;Moon, Hak-Il
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.4
    • /
    • pp.245-276
    • /
    • 2008
  • Brand equity is one of the most important concepts in business practice as well as in academic research. Successful brands can allow marketers to gain competitive advantage (Lassar et al.,1995), including the opportunity for successful extensions, resilience against competitors' promotional pressures, and the ability to create barriers to competitive entry (Farquhar, 1989). Branding plays a special role in service firms because strong brands increase trust in intangible products (Berry, 2000), enabling customers to better visualize and understand them. They reduce customers' perceived monetary, social, and safety risks in buying services, which are obstacles to evaluating a service correctly before purchase. Also, a high level of brand equity increases consumer satisfaction, repurchasing intent, and degree of loyalty. Brand equity can be considered as a mixture that includes both financial assets and relationships. Actually, brand equity can be viewed as the value added to the product (Keller, 1993), or the perceived value of the product in consumers' minds. Mahajan et al. (1990) claim that customer-based brand equity can be measured by the level of consumers' perceptions. Several researchers discuss brand equity based on two dimensions: consumer perception and consumer behavior. Aaker (1991) suggests measuring brand equity through price premium, loyalty, perceived quality, and brand associations. Viewing brand equity as the consumer's behavior toward a brand, Keller (1993) proposes similar dimensions: brand awareness and brand knowledge. Thus, past studies tend to identify brand equity as a multidimensional construct consisted of brand loyalty, brand awareness, brand knowledge, customer satisfaction, perceived equity, brand associations, and other proprietary assets (Aaker, 1991, 1996; Blackston, 1995; Cobb-Walgren et al., 1995; Na, 1995). Other studies tend to regard brand equity and other brand assets, such as brand knowledge, brand awareness, brand image, brand loyalty, perceived quality, and so on, as independent but related constructs (Keller, 1993; Kirmani and Zeithaml, 1993). Walters(1978) defined information search as, "A psychological or physical action a consumer takes in order to acquire information about a product or store." But, each consumer has different methods for informationsearch. There are two methods of information search, internal and external search. Internal search is, "Search of information already saved in the memory of the individual consumer"(Engel, Blackwell, 1982) which is, "memory of a previous purchase experience or information from a previous search."(Beales, Mazis, Salop, and Staelin, 1981). External search is "A completely voluntary decision made in order to obtain new information"(Engel & Blackwell, 1982) which is, "Actions of a consumer to acquire necessary information by such methods as intentionally exposing oneself to advertisements, taking to friends or family or visiting a store."(Beales, Mazis, Salop, and Staelin, 1981). There are many sources for consumers' information search including advertisement sources such as the internet, radio, television, newspapers and magazines, information supplied by businesses such as sales people, packaging and in-store information, consumer sources such as family, friends and colleagues, and mass media sources such as consumer protection agencies, government agencies and mass media sources. Understanding consumers' purchasing behavior is a key factor of a firm to attract and retain customers and improving the firm's prospects for survival and growth, and enhancing shareholder's value. Therefore, marketers should understand consumer as individual and market segment. One theory of consumer behavior supports the belief that individuals are rational. Individuals think and move through stages when making a purchase decision. This means that rational thinkers have led to the identification of a consumer buying decision process. This decision process with its different levels of involvement and influencing factors has been widely accepted and is fundamental to the understanding purchase intention represent to what consumers think they will buy. Brand equity is not only companies but also very important asset more than product itself. This paper studies brand equity model and influencing factors including information process such as information searching and information resources in the fashion market in Asia and Europe. Information searching and information resources are influencing brand knowledge that influences consumers purchase decision. Nine research hypotheses are drawn to test the relationships among antecedents of brand equity and purchase intention and relationships among brand knowledge, brand value, brand attitude, and brand loyalty. H1. Information searching influences brand knowledge positively. H2. Information sources influence brand knowledge positively. H3. Brand knowledge influences brand attitude. H4. Brand knowledge influences brand value. H5. Brand attitude influences brand loyalty. H6. Brand attitude influences brand value. H7. Brand loyalty influences purchase intention. H8. Brand value influence purchase intention. H9. There will be the same research model in Asia and Europe. We performed structural equation model analysis in order to test hypotheses suggested in this study. The model fitting index of the research model in Asia was $X^2$=195.19(p=0.0), NFI=0.90, NNFI=0.87, CFI=0.90, GFI=0.90, RMR=0.083, AGFI=0.85, which means the model fitting of the model is good enough. In Europe, it was $X^2$=133.25(p=0.0), NFI=0.81, NNFI=0.85, CFI=0.89, GFI=0.90, RMR=0.073, AGFI=0.85, which means the model fitting of the model is good enough. From the test results, hypotheses were accepted. All of these hypotheses except one are supported. In Europe, information search is not an antecedent of brand knowledge. This means that sales of global fashion brands like jeans in Europe are not expanding as rapidly as in Asian markets such as China, Japan, and South Korea. Young consumers in European countries are not more brand and fashion conscious than their counter partners in Asia. The results have theoretical, practical meaning and contributions. In the fashion jeans industry, relatively few studies examining the viability of cross-national brand equity has been studied. This study provides insight on building global brand equity and suggests information process elements like information search and information resources are working differently in Asia and Europe for fashion jean market.

  • PDF

Corporate Governance and Managerial Performance in Public Enterprises: Focusing on CEOs and Internal Auditors (공기업의 지배구조와 경영성과: CEO와 내부감사인을 중심으로)

  • Yu, Seung-Won
    • KDI Journal of Economic Policy
    • /
    • v.31 no.1
    • /
    • pp.71-103
    • /
    • 2009
  • Considering the expenditure size of public institutions centering on public enterprises, about 28% of Korea's GDP in 2007, public institutions have significant influence on the Korean economy. However, still in the new government, there are voices of criticism about the need of constant reform on public enterprises due to their irresponsible management impeding national competitiveness. Especially, political controversy over appointment of executives such as CEOs of public enterprises has caused the distrust of the people. As one of various reform measures for public enterprises, this study analyzes the effect of internal governance structure of public enterprises on their managerial performance, since, regardless of privatization of public enterprises, improving the governance structure of public enterprises is a matter of great importance. There are only a few prior researches focusing on the governance structure and managerial performance of public enterprises compared to those of private enterprises. Most of prior researches studied the relationship between parachuting employment of CEO and managerial performance, and concluded that parachuting produces negative effect on managerial performance. However, different from the results of such researches, recent studies suggest that there is no relationship between employment type of CEOs and managerial performance in public enterprises. This study is distinguished from prior researches in view of following. First, prior researches focused on the relationship between employment type of public enterprises' CEOs and managerial performance. However, in addition to this, this study analyzes the relationship of internal auditors and managerial performance. Second, unlike prior researches studying the relationship between employment type of public corporations' CEOs and managerial performance with an emphasis on parachuting employment, this study researches impact of employment type as well as expertise of CEOs and internal auditors on managerial performance. Third, prior researchers mainly used non-financial indicators from various samples. However, this study eliminated subjectivity of researchers by analyzing public enterprises designated by the government and their financial statements, which were externally audited and inspected. In this study, regression analysis is applied in analyzing the relationship of independence and expertise of public enterprises' CEOs and internal auditors and managerial performance in the same year. Financial information from 2003 to 2007 of 24 public enterprises, which are designated by the government, and their personnel information from the board of directors are used as samples. Independence of CEOs is identified by dividing CEOs into persons from the same public enterprise and persons from other organization, and independence of internal auditors is determined by classifying them into two groups, people from academic field, economic world, and civic groups, and people from political community, government ministries, and military. Also, expertise of CEOs and internal auditors is divided into business expertise and financial expertise. As control variables, this study applied foundation year, asset size, government subsidies as a proportion to corporate earnings, and dummy variables by year. Analysis showed that there is significantly positive relationship between independence and financial expertise of internal auditors and managerial performance. In addition, although business expertise and financial expertise of CEOs were not statistically significant, they have positive relationship with managerial performance. However, unlike a general idea, independence of CEOs is not statistically significant, but it is negatively related to managerial performance. Contrary to general concerns, it seems that the impact of independence of public enterprises' CEOs on managerial performance has slightly decreased. Instead, it explains that expertise of public enterprises' CEOs and internal auditors plays more important role in managerial performance rather than their independence. Meanwhile, there are limitations in this study as follows. First, in contrast to private enterprises, public enterprises simultaneously pursue publicness and entrepreneurship. However, this study focuses on entrepreneurship, excluding considerations on publicness of public enterprises. Second, public enterprises in this study are limited to those in the central government. Accordingly, it should be carefully considered when the result of this study is applied to public enterprises in local governments. Finally, this study excludes factors related to transparency and democracy issues which are raised in appointment process of executives of public enterprises, as it may cause the issue of subjectivity of researchers.

  • PDF

An Analysis on the Conditions for Successful Economic Sanctions on North Korea : Focusing on the Maritime Aspects of Economic Sanctions (대북경제제재의 효과성과 미래 발전 방향에 대한 고찰: 해상대북제재를 중심으로)

  • Kim, Sang-Hoon
    • Strategy21
    • /
    • s.46
    • /
    • pp.239-276
    • /
    • 2020
  • The failure of early economic sanctions aimed at hurting the overall economies of targeted states called for a more sophisticated design of economic sanctions. This paved way for the advent of 'smart sanctions,' which target the supporters of the regime instead of the public mass. Despite controversies over the effectiveness of economic sanctions as a coercive tool to change the behavior of a targeted state, the transformation from 'comprehensive sanctions' to 'smart sanctions' is gaining the status of a legitimate method to impose punishment on states that do not conform to international norms, the nonproliferation of weapons of mass destruction in this particular context of the paper. The five permanent members of the United Nations Security Council proved that it can come to an accord on imposing economic sanctions over adopting resolutions on waging military war with targeted states. The North Korean nuclear issue has been the biggest security threat to countries in the region, even for China out of fear that further developments of nuclear weapons in North Korea might lead to a 'domino-effect,' leading to nuclear proliferation in the Northeast Asia region. Economic sanctions had been adopted by the UNSC as early as 2006 after the first North Korean nuclear test and has continually strengthened sanctions measures at each stage of North Korean weapons development. While dubious of the effectiveness of early sanctions on North Korea, recent sanctions that limit North Korea's exports of coal and imports of oil seem to have an impact on the regime, inducing Kim Jong-un to commit to peaceful talks since 2018. The purpose of this paper is to add a variable to the factors determining the success of economic sanctions on North Korea: preventing North Korea's evasion efforts by conducting illegal transshipments at sea. I first analyze the cause of recent success in the economic sanctions that led Kim Jong-un to engage in talks and add the maritime element to the argument. There are three conditions for the success of the sanctions regime, and they are: (1) smart sanctions, targeting commodities and support groups (elites) vital to regime survival., (2) China's faithful participation in the sanctions regime, and finally, (3) preventing North Korea's maritime evasion efforts.