• Title/Summary/Keyword: Assessment on Environmental Stabilization

Search Result 41, Processing Time 0.038 seconds

A Review of Stream Assessment Methodologies and Restoration: The Case of Virginia, USA

  • Bender, Shera M.;Ahn, Chang-Woo
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.69-79
    • /
    • 2011
  • Rapid population growth and land use changes have severely degraded streams across the United States. In response, there has been a surge in the number of stream restoration projects, including stream restoration for mitigation purposes. Currently, most projects do not include evaluation and monitoring, which are critical in the success of stream restoration projects. The goal of this study is to review the current status of assessment methodologies and restoration approaches for streams in Virginia, with the aim of assisting the restoration community in making sound decisions. As part of the study, stream restoration projects data from a project in Fairfax County, Virginia was assessed. This review revealed that the stream assessment methodologies currently applied to restoration are visuallybased and do not include biological data collection and/or a method to incorporate watershed information. It was found from the case study that out of the twenty nine restoration projects that had occurred between 1995 and 2003 in Fairfax County, nineteen projects reported bank stabilization as a goal or the only goal, indicating an emphasis on a single physical component rather than on the overall ecological integrity of streams. It also turned out that only seven projects conducted any level of monitoring as part of the restoration, confirming the lack of evaluation and monitoring. However, Fairfax County has recently improved its stream restoration practices by developing and incorporating watershed management plans. This now provides one of the better cases that might be looked upon by stakeholders when planning future stream restoration projects.

Immobilization of As and Pb in Contaminated Soil Using Bead Type Amendment Prepared by Iron NanoparticlesImpregnated Biochar (철 나노 입자가 담지된 바이오차 기반 비드 형태 안정화제를 이용한 비소 및 납 오염토양의 안정화)

  • Choi, Yu-Lim;Kim, Dong-Su;Kang, Tae-Jun;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.4
    • /
    • pp.247-257
    • /
    • 2021
  • In this work, Iron Nano-Particles Impregnated BioChar/bead (INPBC/bead) soil amendment was developed to increase biochar's reactivity to As in soil and preventing possible wind loss. Prior to preparation of INPBC/bead, INPBC was produced utilizing lignocellulosic biomass and Fe(III) solution in a hydrothermal method, followed by a calcination process. Then, the bead type amendment, INPBC/bead was produced by cross-linking reaction of alginate with INPBC. FT-IR, XRD, BET, and SEM-EDS analyses were utilized to characterize the as-synthesised materials. The particle size range of INPBC/bead was 1-4 mm, and different oxygen-containing functional groups and Fe3O4 crystalline phase were produced on the surface of INPBC/bead, according to the characterization results. The soil cultivation test was carried out in order to assess the stabilization performance of INPBC/bead utilizing As and Pb-contaminated soil obtained from an abandoned mining location in South Korea. After 4 weeks of culture, TCLP and SPLP extraction tests were performed to assess the stabilization efficacy of the amendment. The TCLP and SPLP findings revealed that raising the application ratio improved stabilizing efficiency. The As stabilization efficiency was determined to be 81.56 % based on SPLP test findings for a 5% in (w/w) INPBC/bead treatment, and the content of Pb in extracts was reduced to the limit of detection. According to the findings of this study, INPBC/bead that can maintain pH of origin soil and minimize wind loss might be a potential amendment for soil polluted with As and heavy metals.

Application of Nano Fe°-impregnated Biochar for the Stabilization of As-contaminated Soil (비소 오염토양의 안정화를 위한 나노 Fe° 담지 바이오차 적용 연구)

  • Choi, Yu-Lim;Angaru, Ganesh Kumar Reddy;Ahn, Hye-Young;Park, Kwang-Jin;Joo, Wan-Ho;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.5
    • /
    • pp.350-362
    • /
    • 2020
  • In this study, nano Fe°-impregnated biochar (INPBC) was prepared using pruning residues and one-pot synthetic method and evaluated its performance as an amendment agent for the stabilization of arsenic-contaminated soil. For the preparation of INPBC, the mixture of pruning residue and Fe (III) solution was heated to 220℃ for 3hr in a teflon-sealed autoclave followed by calcination at 600℃ under N2 atmosphere for 1hr. As-prepared INPBC was characterized using FT-IR, XRD, BET, SEM. For the stabilization test of as-prepared INPBC, As-contaminated soils (Soil-E and Soil-S) sampled from agricultural sites located respectively near E-abandoned mine and S-abandoned mine in South Korea were mixed with different of dosage of INPBC and cultivated for 4 weeks. After treatment, TCLP and SPLP tests were conducted to determine the stabilization efficiency of As in soil and showed that the stabilization efficiency was increased with increasing the INPBC dosage and the concentration of As in SPLP extractant of Soil-E was lower than the drinking water standard level of Ministry of Environment of South Korea. The sequential fractionation of As in the stabilized soils indicated that the fractions of As in the 1st and 2nd stages that correspond liable and known as bioavailable fraction were decreased and the fractions of As in 3rd and 4th stages that correspond relatively non-liable fraction were increased. Such a stabilization of As shows that the abundant nano Fe° on the surface of INPBC mixed with As-contaminated soils played the co-precipitation of As leaching from soil by surface complexation with iron. The results of this study may imply that INPBC as a promising amendments for the stabilization of As-contaminated soil play an important role.

Assessment on the Transition of Arsenic and Heavy Metal from Soil to Plant according to Stabilization Process using Limestone and Steelmaking Slag (석회석과 제강슬래그를 이용한 오염토양 안정화에 따른 비소 및 중금속의 식물체 전이도 평가)

  • Koh, Il-Ha;Lee, Sang-Hwan;Lee, Won-Seok;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.63-72
    • /
    • 2013
  • This study estimated stabilization efficiency of As and heavy metal contaminated agricultural soil in abandoned mine through pot experiment. Also contaminants uptake of plant (lettuce) was compared as function of amendment (limestone, steelmaking slag and the mixture of these) addition. In soil solution analysis, concentration of contaminants in soil solutions which added limestone or steelmaking slag were lower than that of the mixture. Especially in As analysis, concentration with 5% (wt) addition of steelmaking slag showed the lowest value among those with other amendments. This seems that As stabilization happens through Fe adsorption during precipitation of Fe by pH increasing. Leachability of As in stabilized soil by TCLP was represented similar result with soil solution analysis. However leachability of heavy metals in stabilized soil was similar with that of non-stabilized soil due to dissolution of alkali precipitant by weak acid. Contaminants uptake rate by plant was also lower when limestone or steelmaking slag was used. However this study revealed that concentration of contaminants in soil solution didn't affect to the uptake rate of plant directly. Because lower $R^2$ (coefficient of determination) was represented in linear regression analysis between soil solution and plant.

Analysis for the Distribution of the Heat Generated on a Nanji Waste Landfill in Using Landsat TM Image (LANDSAT TM 영상에 의한 난지도 매립지의 발생열 분포해석)

  • Yang, I.T.;Kim, M.D.;Yun, B.H.;Kim, Y.J.
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.2
    • /
    • pp.59-70
    • /
    • 1995
  • The solution-state of a reclaimed waste would be known to the method in using an analysis for seepage. But it is not the best method in the huge landfill reclaimed all kinds of the waste at random. Especially in case of the landfill called the Nan Gi-do located along the Han-river, it is difficult to judge the generative seepage to be flowed in to the Han-river. So to plan the effective stabilization on a landfill, it is very useful survey method using the Landsat TM image. Operating a heat-distribution analysis with the Landsat TM image, in case of a landfill not having definite data, we would assume the reclaimed sections of the waste to judge a solution-speed late comparatively such as a industry waste or a harmful waste through the heat change.

  • PDF

A Feasibility Assessment of CMDS (Coal Mine Drainage Sludge) in the Stabilization of Mercury Contaminated Soil in Mine Area (광산지역 수은 오염토양 안정화를 위한 석탄광산배수슬러지의 적용성 평가)

  • Koh, Il-Ha;Kwon, Yo Seb;Moon, Deok Hyun;Ko, Ju In;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2020
  • This study assessed the feasibility of coal mine drainage sludge (CMDS) as a stabilizing agent for mercury contaminated soil through pot experiments and batch tests. In the pot experiments with 43 days of lettuce growth, the bioavailability of mercury in the amended soil and mercury content of the lettuce were decreased by 46% and 50%, respectively. These results were similar to those of the soil amended with the sulfide compound (FeS) generally used for mercury stabilization. Thus, CMDS could be an attractive mercury stabilizer in terms of industrial by-product recycling. Batch tests were conducted to examine mercury fractionation including reactions between the soil and acetic acid. The result showed that some elemental fraction changed to strongly bounded fraction rather than residual (HgS) fraction. This made it possible to conclude that mercury adsorption on oxides in CMDS was the major mechanism of stabilization.

Evaluation of the Feasibility of Eliminating Non-point Source Pollution Using Waste Sewage Sludge Bio-blocks (하수슬러지를 이용한 Bio-block의 비점오염물질 제거 가능성 평가)

  • Han, Sang Moo;Kim, Do Hyeong;Jeong, Byung Gon
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.5
    • /
    • pp.363-368
    • /
    • 2021
  • On the assessment results of the non-point source pollutant removability of bio-block using waste sewage sludge, at the reactor's initial operation stage, the removal efficiency of COD was slightly unstable. However, after the reactor was stabilized, the COD removal efficiency was higher in the reactor filled with bio-blocks compared to the reactor filled with broken stones. In terms of nitrogen and phosphorus, their removal efficiency was unstable at the initial stage of the reactor operation. This phenomenon was investigated through the bio-block elution experiments. Results indicated that nitrogen and phosphorus were eluted from the bio-blocks affecting their removal at the initial operation. Furthermore, based on elution tests conducted after the dry ashing of the waste sewage sludge, part of the nitrogen and phosphorus was eluted similar to the bio-block elution test results, although considerable amounts of nitrogen and phosphorus were reduced compared to the sludge cake. Prior to the use of the waste sewage sludge bio-blocks as a filter medium to remove non-point source pollutants, a stabilization period of 10 days was required. After the stabilization process, results showed similar characteristics as general aggregates. Moreover, to use the bio-block as a filter medium for the non-point pollutant removal, the filling ratio of 75% was the most suitable as it resulted in the highest nitrogen removal efficiency after the stabilization. The results of this study suggested that waste sewage sludge can be suitably recycled as a mixed raw material for the bio-blocks, with satisfactory application as a filter medium in artificial wetlands, stormwater runoff problems, stream water pollutants to eliminate non-point source pollutants.

Suggestions for Increasing Utilization of KORA for Supporting the Off-site Risk Assessment System (화학사고 장외영향평가 지원 프로그램(KORA)의 활용도 증대를 위한 제언)

  • Kim, Jungkon;Ryu, Jisung;Ryu, Taekwon;Kwak, Sollim;Lim, Hyeongjun;Choi, Woosoo;Jung, Jinhee;Lee, Jieun;Lim, Dongyeon;Yoon, Junheon
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.2
    • /
    • pp.124-132
    • /
    • 2018
  • Objectives: All enterprises intending to install and operate hazardous chemical handling facilities should prepare an off-site risk assessment (ORA) report that evaluates the impact of potential chemical accidents on the surrounding environment and population. This study was conducted to introduce the process of development and the functioning of the Korea Off-site Risk Assessment support tool (KORA) developed by the National Institute of Chemical Safety and to suggest manners to increase its utilization. Additionally, this article provided an overview of KORA. Methods: In order to identify problems with and refinements for KORA, the required items for each phase of KORA were derived by analyzing the Chemical Control Act and related administrative regulations. Results: The functions of KORA made receptor-considered assessment of chemical accidents possible, but several limitations were found in particular phases, such as the analysis of impact range, consideration of sensitive receptors, and assessment of environmental receptors. Conclusion: In this study, we suggested manners to increase the utilization of KORA. It is anticipated that the further research suggested in the study could contribute to the stabilization of the KORA system.

Risk Mitigation Measures in Arsenic-contaminated Soil at the Forest Area Near the Former Janghang Smelter Site: Applicability of Stabilization Technique and Follow-up Management Plan ((구)장항제련소 주변 송림숲 등 식생지역에서의 비소오염토양 위해도 저감 조치: 안정화 공법 적용성 평가 및 사후관리 계획)

  • An, Jinsung;Yang, Kyung;Kang, Woojae;Lee, Jung Sun;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.1-11
    • /
    • 2017
  • This study was conducted to investigate the performance of four commercial chemical agents in stabilizing arsenic (As) in soil at the forest area near the former Janghang smelter site. After amending the stabilizing agents (A, B, C, and D) into As-contaminated soil samples, synthetic precipitation leaching procedure (SPLP) and solubility bioavailability research consortium (SBRC)-extractable As concentrations significantly decreased except for agent D, which is mainly composed of fly ash and calcium carbonate. Increase of SPLP and SBRC-extractable As concentrations in four soil samples (S1, S2, S3, and J2) was attributed to desorption of As adsorbed on iron oxides due to high pH generated by agent D. It is therefore necessary to consider application conditions according to soil characteristics such as pH and buffering capacity. Results of sequential extraction showed that readily extractable fractions of As in soil (i.e., sum of $SO_4-$ and $PO_4-extractable$ As in soil) were converted into non-readily extractable fractions by amending agents A, B, and C. Such changes in the As distribution in soil resulted in the decrease of SPLP and SBRC-extractable As concentration. A series of follow-up monitoring and management plan has been suggested to assess the longevity of the stabilization treatments in the site.

Reliability Assessment of Temperature Indicator for Simplified Measurement on Conservation Environment of Cultural Heritage (문화재 보존환경 간이 측정을 위한 온도지시카드 신뢰성 평가)

  • Lim, Bo-A;Shin, Eun-Jeong;Lee, Sun-Myung
    • 보존과학연구
    • /
    • s.31
    • /
    • pp.59-68
    • /
    • 2010
  • Cultural heritages are damaged by surrounding several environmental factors. Main factors are temperature, humidity, light, atmosphere and indoor pollutant, organism, etc. Therefore, to prevent damage of cultural heritage from such environmental factor, conservation environment monitoring becomes more important. Indicator is one of the simple method for environment monitoring. It can be used without expensive and complex equipments. However, it should be performed scientific examination for application to cultural heritage. In this study, some Temperature Indicators were chosen and reliability assessment was carried out for application to cultural heritage. Brightness($L^*$) is selected for reliability assessment factor. As a result of lab test, Temperature Indicators were not influenced greatly in humidity change. When they were exposed to setting temperature, the color was changed in setting temperature area and ${\pm}2^{\circ}C$ part of setting temperature. Especially brightness value was high in setting temperature area. Also, Temperature Indicators were stabilized after about 16 minutes when were exposed to temperature difference of $10^{\circ}C$ and when temperature difference with exposure environment is smaller, stabilization time shortened. Therefore, it is a possible to confirm that selected Temperature Indicator is reliable product through measurement of color difference value and naked eye observation.

  • PDF