• 제목/요약/키워드: Assessment Vulnerability

검색결과 574건 처리시간 0.029초

A Study on Vulnerability Assessment for the Digital Assets in NPP Based on Analytical Methods (분석적 방법을 적용한 원전디지털자산 취약점 평가 연구)

  • Kim, In-kyung;Kwon, Kook-heui
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • 제28권6호
    • /
    • pp.1539-1552
    • /
    • 2018
  • The necessity of establishing a more secure cyber security system is emerging to protect NPP against cyber attacks as nuclear facilities become increasingly reliant on digital system. Proper security measures should be established through periodic analysis and evaluation of vulnerabilities. However, as Nuclear facilities has safety characteristics as their top priority and it requires a lot of time and cost to construct regarding the activities for vulnerability analysis, it is difficult to apply the existing vulnerability analysis environment and analysis tools. In this study, We propose a analytical vulnerability assessment method to overcome the limitations of existing vulnerability analysis methods through analysis the existing vulnerability analysis methods and the issues to be considered when applying the vulnerability analysis method.

An Estimation of Landslide's Vulnerability by Analysis of Static Natural Environmental Factors with GIS (GIS를 이용한 정적 자연환경인자의 분석에 의한 산사태 취약성 평가)

  • Yang, In-Tae
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 한국지형공간정보학회 2005년도 아시아 태평양 국제 GSIS 학술발표회
    • /
    • pp.61-72
    • /
    • 2005
  • The landslide risk assessment process consists of hazard risk assessment and vulnerability analysis. landslide hazard risk is location dependent. Therefore, maps and spatial technologies such as GIS are very important components of the risk assessment process. This paper discusses the advantages of using GIS technology in the risk assessment process and illustrates the benefits through case studies of live projects undertaken. The goal of this study is to generate a map of landslide vulnerability map by analysis of static natural factors with GIS. A simple and efficient algorithm is proposed to generate a landslide potentialities map from DEM and existing maps. The categories of controlling factors for landslides, aspect of slope, soil, vegetation are defined. The weight values for landslide potentialities are calculated from AHP method. Slope and slope-direction are extracted from DEM, and soil informations are extracted from digital soil map. Also, vegetation informations are extracted from digital vegetation map. Finally, as overlaying, landslide potentialities map is made out, and it is verified with landslide place.

  • PDF

The needs for advanced sensor technologies in risk assessment of civil infrastructures

  • Fujino, Yozo;Siringoringo, Dionysius M.;Abe, Masato
    • Smart Structures and Systems
    • /
    • 제5권2호
    • /
    • pp.173-191
    • /
    • 2009
  • Civil infrastructures are always subjected to various types of hazard and deterioration. These conditions require systematic efforts to assess the exposure and vulnerability of infrastructure, as well as producing strategic countermeasures to reduce the risks. This paper describes the needs for and concept of advanced sensor technologies for risk assessment of civil infrastructure in Japan. Backgrounds of the infrastructure problems such as natural disasters, difficult environment, limited resource for maintenance, and increasing requirement for safety are discussed. The paper presents a concept of risk assessment, which is defined as a combination of hazard and structural vulnerability assessment. An overview of current practices and research activities toward implementing the concept is presented. This includes implementation of structural health monitoring (SHM) systems for environment and natural disaster prevention, improvement of stock management, and prevention of structural failure.

The Target Modeling and The Shot Line Analysis System to Assess Vulnerability of the Ground Combat Vehicle (지상전투차량 취약성 평가를 위한 표적 모델링과 피격선 분석 시스템)

  • Yoo, Chul;Jang, Eun Su;Park, Kang;Choi, Sang Yeong
    • Korean Journal of Computational Design and Engineering
    • /
    • 제20권3호
    • /
    • pp.238-245
    • /
    • 2015
  • Vulnerability assessment is a process to calculate the damage degree of a combat vehicle when the combat vehicle is attacked by an enemy. When the vehicle is hit, it is necessary to analyze the shot line to calculate which components are damaged and judge whether the armor of the vehicle is penetrated by enemy's warhead. To analyze the shot line efficiently, this paper presents the target modeling and the shot line analysis system to assess vulnerability of the ground combat vehicle. This system is easily able to do several functions: 1) the program reads STL files converted from CAD model which is designed by commercial CAD software. 2) It calculates the intersection between triangle of STL mesh and the shot line, and check if the components of the model are penetrated. 3) This program can visualize the results using OpenGL. The vulnerability assessment using the shot line analysis can be used to model the armor of the combat vehicle and arrange the inner components effectively in the early stage of development of the combat vehicle.

Integrated survivability assessment given multiple penetration hits (다중 관통 피격에 따른 함정 통합 생존성 분석 절차)

  • Kim, Kwang-Sik;Lee, Jang-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.69-76
    • /
    • 2014
  • Survivability assessments and vulnerability reductions are required in warship design. A warship's survivability is assessed by its susceptibility, vulnerability, and recoverability. In this paper, an integrated survivability assessment for a warship subjected to multiple hits is introduced. The methodology aims at integrating a survivability assessment into an early stage of warship design. The hull surface is idealized using typical geometries for RCS (Radar Cross Section) detection probability and susceptibility. The Vulnerability is evaluated by using the shot-line. The recoverability is estimated using a survival time analysis. This enables the variation of survivability to be assessed. Several parameters may be varied to determine their effects on the survivability. The susceptibility is assessed by the probability of detecting the radar cross section of the subject and the probability of being hit based on a probability density function. The vulnerability is assessed by the kill probability based on the vulnerable area of critical components, according to the component's layout and redundancy. Recoverability is assessed by the recovery time for damaged critical components.

Assessment of Vulnerable Area and Naval Ship's Vulnerability based on the Carleton Damage Function (칼튼 손상함수를 이용한 주요장비의 취약 면적 산정과 함정 취약성 평가 방법)

  • Lee, Jang Hyun;Choi, Won Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • 제55권3호
    • /
    • pp.274-280
    • /
    • 2018
  • This paper deals with the calculation of vulnerable areas of critical components required for the assessment of naval ship's vulnerability. Taking into account the effectiveness of threatening weapons, the probability density function of damage was used to assess vulnerable areas or vulnerabilities of critical components. It is shown that the vulnerable area of critical component can be simply computed from the damage function. Considering the weapon effectiveness of fragmentation and explosion on the target, both Carleton Damage Function and Rectangular Cookie Cutter Function representing the probability of damage are applied to the vulnerable area assessment. Carleton damage function is utilized to describe the weapon-target interaction in the vulnerability analyses. A problem of blast effect against an assumed naval ship is chosen as a case study. Vulnerability is evaluated by applying the suggested method to the equipments arranged in the engine room of the virtual ship.

A dynamic reliability approach to seismic vulnerability analysis of earth dams

  • Hu, Hongqiang;Huang, Yu
    • Geomechanics and Engineering
    • /
    • 제18권6호
    • /
    • pp.661-668
    • /
    • 2019
  • Seismic vulnerability assessment is a useful tool for rational safety analysis and planning of large and complex structural systems; it can deal with the effects of uncertainties on the performance of significant structural systems. In this study, an efficient dynamic reliability approach, probability density evolution methodology (PDEM), is proposed for seismic vulnerability analysis of earth dams. The PDEM provides the failure probability of different limit states for various levels of ground motion intensity as well as the mean value, standard deviation and probability density function of the performance metric of the earth dam. Combining the seismic reliability with three different performance levels related to the displacement of the earth dam, the seismic fragility curves are constructed without them being limited to a specific functional form. Furthermore, considering the seismic fragility analysis is a significant procedure in the seismic probabilistic risk assessment of structures, the seismic vulnerability results obtained by the dynamic reliability approach are combined with the results of probabilistic seismic hazard and seismic loss analysis to present and address the PDEM-based seismic probabilistic risk assessment framework by a simulated case study of an earth dam.

Collision risk assessment based on the vulnerability of marine accidents using fuzzy logic

  • Hu, Yancai;Park, Gyei-Kark
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.541-551
    • /
    • 2020
  • Based on the trend, there have been numerous researches analysing the ship collision risk. However, in this scope, the navigational conditions and external environment are ignored or incompletely considered in training or/and real situation. It has been identified as a significant limitation in the navigational collision risk assessment. Therefore, a novel algorithm of the ship navigational collision risk solving system has been proposed based on basic collision risk and vulnerabilities of marine accidents. The vulnerability can increase the possibility of marine collision accidents. The factors of vulnerabilities including bad weather, tidal currents, accidents prone area, traffic congestion, operator fatigue and fishing boat operating area are involved in the fuzzy reasoning engines to evaluate the navigational conditions and environment. Fuzzy logic is employed to reason basic collision risk using Distance to Closest Point of Approach (DCPA) and Time of Closest Point of Approach (TCPA) and the degree of vulnerability in the specific coastal waterways. Analytical Hierarchy Process (AHP) method is used to obtain the integration of vulnerabilities. In this paper, vulnerability factors have been proposed to improve the collision risk assessment especially for non-SOLAS ships such as coastal operating ships and fishing vessels in practice. Simulation is implemented to validate the practicability of the designed navigational collision risk solving system.

The Present Status and Issues of Local Government Adaptation Plans for Climate Change: Focusing on the Health Sector (지자체 기후변화 적응대책의 현황과 과제 : 건강분야를 중심으로)

  • Lee, Jaehyung
    • Journal of Environmental Health Sciences
    • /
    • 제43권2호
    • /
    • pp.111-121
    • /
    • 2017
  • Objectives: In this study, an analysis was performed on local government adaptation plans for climate change focusing on the health sector. The limitations of past study results have been summarized and new research subjects for preparing for the advanced second period (2018-2022) of the local government adaptation plan for climate change have been suggested. Methods: First, a review of the literature related to vulnerability assessment and adaptation plans was performed. Next, a comparison among the 16 metropolitan governments' vulnerability assessment results and adaptation plans was made. Lastly, a classification of the adaptation policy and budgets to compare with their real budget amounts was performed. Results: The results show that there is a categorizing discrepancy between vulnerability assessment and adaptation policy. In addition, their adaptation budget amounts turned out to be too large in comparison with the actual budget amounts. Conclusion: The first period (2013-2017) local government adaptation plans for climate change had some limitations. This is because there was a rapid driving force for establishing adaptation plans under the green growth strategy in Korea. Now, we are confronting a risk of adaptation to climate change. By expanding this approach, the government would be able to set up a detailed policy to improve the plans during the second period.

Development of the assessment method for weekly groundwater resources management vulnerability using the correlation between groundwater level and precipitation considering critical infiltration concept (한계 침투량을 고려한 강우와 지하수위의 상관관계를 이용한 주 단위 지하수자원 관리 취약시기 평가 방법 개발)

  • Lee, Jae-Beom;Yang, Jeong-Seok;Kim, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • 제51권12호
    • /
    • pp.1237-1245
    • /
    • 2018
  • We developed the assessment method for weekly groundwater resources management vulnerability. To consider the effect of precipitation on groundwater level, we calculated correlation coefficient between groundwater level and precipitation applying critical infiltration concept. We developed the vulnerability assessment criteria and calculated weights for criteria using the entropy method. Weekly groundwater resources management vulnerability of small administrative districts were estimated using developed method in this research. The developed method can be a basis for the establishment of the spatio-temporal groundwater resources management plan.