• 제목/요약/키워드: Assembly cell

검색결과 453건 처리시간 0.034초

Application of Bucket Brigades in Assembly Cells for Self Work Balancing (자율적인 밸런싱을 실현하는 Bucket Brigade 기반의 조립셀 운영방식)

  • Koo, Pyung-Hoi
    • IE interfaces
    • /
    • 제22권2호
    • /
    • pp.144-152
    • /
    • 2009
  • Assembly line has been recognized as an efficient production system in mass production. However, the recent production environment characterized as mass customization urges production managers to transform a long assembly line to a number of short assembly cells. To maximize the utilization of resources in an assembly cell, it is important to have the line balanced. This paper presents a bucket brigade-based assembly cell. Bucket brigade is a way of coordinating workers who progressively perform a set of assembly operations on a flow line. Each worker follows a simple rule: perform assembly operations on a product until the next worker downstream takes it over; then go back to the previous worker upstream to take over a new assembly job. In this way, the line balances itself. The bucket brigade assembly cell is analyzed and compared with traditional assembly lines and general assembly cells. The paper also discusses some prerequisite requirements and limitations when the bucket brigade assembly cells are employed.

A study on the modelling and simulation of robotic assembly cells (로보틱 조립셀의 모델링 및 시뮬레이션에 관한 연구)

  • 홍지민;김대원;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.411-416
    • /
    • 1990
  • A modelling process of a robotic assembly cell and a method for analysis of the assembly cell operation through simulation are presented. An assembly cell including industrial robots is the subject of the model. The states of the assembly cell elements are taken as the state variables and the relationships between the states are described mathematically using the operators. An algorithm for the cell operation is developed from the relationships between the states and the information on the assembly task, and efficient analyses are performed by the simulation results.

  • PDF

Integrated Layout Design in Cellular Flexible Assembly Systems (셀형 유연조립시스템에서의 통합 배치설계)

  • 최영호;노인규
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • 제22권4호
    • /
    • pp.133-149
    • /
    • 1997
  • The major two steps required to design a cellular layout are cell formation and cell layout. Because of the differences between manufacturing and assembly operations, the logic of cell formation and cell layout between an FMS and an FAS is not the same. Since the time for the assembly operations is usualaly relatively short, the transfer time is thus very crucial for the performance of assembly systems. Transfore in a cellular FAS it is more important to eliminate backtracking operations in assembly planning, not to allow intercellular movements in cell formation, and to arrange machines according to assembly sequence in cell layout. This study presents a method for the integrated layout design in cellular FASs considering the characteristics of FAS, layout, and production factors.

  • PDF

A Decentralized Self-Control Strategy for Assembly Cell Using Bucket Brigade (Bucket Brigade를 기반으로 한 분산자율형 조립셀 운영전략)

  • Koo, Pyung Hoi
    • Journal of Korean Institute of Industrial Engineers
    • /
    • 제41권4호
    • /
    • pp.330-337
    • /
    • 2015
  • A bucket-brigade is a way of transporting items where items are passed from one person to the next. The operation of the bucket brigade imitates the cooperative behavior of ants when brood, food or other resources are moved. Koo (2009) presented a bucket brigade-based assembly cell where each worker follows a simple rule: perform assembly operations on a product until the next worker downstream takes it over; then go back to the previous worker upstream to take over a new assembly job. In this way, the flow line is self-balanced without any predetermined job assignment. However, there are some productivity losses related to hand-off and blocking. This paper examines the hand-off and blocking losses and presents a new bucket brigade-based assembly cell where working areas for each assembler is restricted with the help of buffer interfaces. Simulation experiments are used to validate the performance of the new assembly system.

Network-type Cell Layout in Cellular Flexible Assembly Systems (셀형유연조립시스템에서의 네트웍형 셀배치)

  • 노인규;최형호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • 제19권39호
    • /
    • pp.63-73
    • /
    • 1996
  • With the success of flexible manufacturing systems (FMSs), flexible assembly systems (FASs) have been developed to automate factories further. As in a cellular FMS, a cellular FAS is considered as the most flexible and feasible assembly system configuration Because of the differences between manufacturing and assembly operation, the logic of cell formation and cell layout between a FMS and a FAS is not the same. Since the time for assembly operation is usually relatively short, the transfer time is thus very crucial for the performance of assembly systems. Therefore in assembly systems it is important to reduce the transfer time by sequencing operations efficiently and arranging machines like the sequences. The network-type layout is not only feasible for the machine arrangement based on operation sequences, but it has also layout flexibility. Therefore it is a reasonable layout configuration for cellular FASs. This paper presents a method for the cell layout based on the network-type layout in a cellular FAS design.

  • PDF

Application of Advanced Manufacturing Technologies to Polymer Lithium Ion (PLI) Bi Cell Production Electrode Preparation / Assembly / Lamination

  • Singleton Robert W.;Nelson Craig R.
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 1999년도 전지기술심포지움
    • /
    • pp.83-91
    • /
    • 1999
  • Technical advances in manufacturing techniques and applied technologies have been made for bi cell manufacture, and are currently being implemented in the areas of discrete electrode / bi cell assembly, and electrode / separator lamination. Not only have improvements been noted in the reliability of the mechanical assembly and the increase in yields and decrease in costs, battery electrical performance has also been enhanced thru these assembly techniques. Evidence has been shown that the lamination techniques can influence porosity and electrolyte dispersion, and therefore electrical performance and long term reliability of the cells.

  • PDF

Optimization for the Composition of Assembly Cell in the Optical-Components System

  • Kim, Sok-Ha;Kim, Young-Ho;Seung, Gweon-Jeong;Lee, Man-Hyung;Bea, Jong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.133.4-133
    • /
    • 2001
  • In the paper, a Visual factory model for a optical-components manufacturing process is built. The optical-components manufacturing process is composed of 3 operation processes; optical sub assembly process, package assembly process, and fiber assembly process. Each process is managed not a batch mode, which is one of most popular manufacturing styles to produce a great deal of industrial output, but though a modular cell. In the processes, a modular cell has to be processed independently of the other cells. Optimization for the composition of assembly cell in the optical-components system is made by the Visual factory model.

  • PDF

A framework for modelling and operation management of robotic assembly cells via knowledge base (지식베이스를 이용한 로보틱 조립셀의 모델링과 운영관리를 위한 프레임 워크)

  • 김대원;고명삼;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.374-379
    • /
    • 1988
  • We propose a framework for modelling and operation management of robotic assembly cells via knowledge base. In the framework, each component of the cell is considered as a state variable, the relations among the state variables are stored in state transition maps(STMs) and then transformed into the form of knowledge. The assembly job tree(AJT) which includes the precedence relations and the constraints for assembly tasks is also described. Finally, an algorithm is presented to manage the cell operation.

  • PDF

Development of an Integrated Electrode-bipolar Plate Assembly with Reduced Contact Resistance for Vanadium Redox Flow Battery (바나듐 레독스 흐름전지용 접촉저항 감소 일체형 전극-분리판 조립체 개발)

  • Amanpreet Kaur;Jun Woo Lim
    • Composites Research
    • /
    • 제37권3호
    • /
    • pp.190-196
    • /
    • 2024
  • The bipolar plate is a crucial element of the vanadium redox flow battery (VRFB) as it serves as both the electrical conduit and the structural support for the cell within the VRFB stack. Although, the graphite material is primarily used for the bipolar plate due to its excellent electrical conductivity, a significant limitation of performance of the VRFB is present due to high interfacial contact resistance (ICR) arises between the electrode and bipolar plate in the cell stack. This study aims to develop an integrated electrode-bipolar plate assembly that will address the limitations of the ICR. The integrated assembly was constructed using a single carbon felt with thermoplastic and thermoset polymers utilizing hot press method. Experimental results verify that the bipolar plate assembly exhibits reduced area specific resistance (ASR) due to the continuous electrical path. Additionally, from the charge/discharge cell test results, the integrated assembly shows improved cell performance. Therefore, the developed integrated electrode-bipolar plate assembly can serve as a substitute for the conventional bipolar plate and electrode assembly.

Petri-Nets Modeling and Performance Evaluation of Optical-components Manufacturing System (광 부품 조립 시스템의 모델링과 성능평가)

  • 김영호;김지한;정승권;배종일;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.491-495
    • /
    • 2002
  • In the paper, a Visual factory model for a optical-components manufacturing process is built. The optical-components manufacturing process is composed of 3 operation processes; optical sub assembly process, package assembly process, and fiber assembly process. Each process is managed not a batch mode, which is one of most popular manufacturing styles to produce a great deal of industrial output, but though a modular cell. In the processes, a modular cell has to be processed independently of the other cells. Optimization for the composition of assembly cell in the optical-components system is made by the Visual factory model.

  • PDF