• Title/Summary/Keyword: Assembly Tolerance

Search Result 118, Processing Time 0.024 seconds

Design of Plasma Cutting Torch by Tolerance Propagation Analysis (공차누적해석을 이용한 플라즈마 절단토치의 설계에 관한 연구)

  • 방용우;장희석;장희석;양진승
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.122-130
    • /
    • 2000
  • Due to the inherent dimensional uncertainty, the tolerances accumulate in the assembly of plasma cutting torch. Tolerance accumulation has serious effect on the performance of the plasma torch. This study proposes a statistical tolerance propagation model, which is based on matrix transform. This model can predict the final tolerance distributions of the completed plasma torch assembly with the prescribed statistical tolerance distribution of each part to be assembled. Verification of the proposed model was performed by making use of Monte Carlo simulation. Monte Carlo simulation generates a large number of discrete plasma torch assembly instances and randomly selects a point within the tolerance region with the prescribed statistical distribution. Monte Carlo simulation results show good agreement with that of the proposed model. This results are promising in that we can predict the final tolerance distributions in advance before assembly process of plasma torch thus provide great benefit at the assembly design stage of plasma torch.

  • PDF

The Study on the System of Improving the Assembly Tolerance of Cellphone Camera Module (휴대폰 카메라 모듈의 조립공차 개선 시스템에 관한 연구)

  • Ye, In-Soo;Cheong, Seon-Hwan;Choi, Seong-Dae;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.57-63
    • /
    • 2010
  • Tolerance analysis is one of the most important processes to improve the image quality of products. High resolution camera module for mobile phones needs precision assembly technology since the module becomes smaller and thinner. This paper will focus on the unit tolerance and the assembly tolerance which can affect the performance of the module. Lens shading and relative illumination were used to evaluate the optical axis scatter for each component on camera and estimate the assembly yield rate based on the evaluation result. A program was developed to analyze the impact on optical axis by each module, then to optimize the dimensions and tolerance for reducing the scatter of optical axis assembly. Through the simulation, though a rate of relative illumination was declined in where optical axis is displaced $100{\mu}m$ from sensor center, MTF performance is not influenced by increasing in optical axis displacement. It was seen that assembly yield was improved in result of simulation after correcting optical axis tolerance.

Development of Simulation Model to Assembly Tolerance Design (조립 공차 설계를 위한 시뮬레이션 모델 개발)

  • 장현수
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.3
    • /
    • pp.221-230
    • /
    • 2001
  • The assembly tolerance design methods have applied linear or nonlinear programming methods and used simulation method and search algorithms to optimize the tolerance allocation of each part in an assembly. However, those methods are only considered to the relationship between tolerance and manufacturing cost, which do not consider a quality loss cost for each part tolerance. In this paper, the integrated simulation model used genetic algorithm and the Monte-Carlo simulation method was developed for the allocation of the optimal tolerance considering the manufacturing cost and quality loss cost.

  • PDF

The Effect of Annular Projection Collapse on Tolerance of ECV Assembly (링 프로젝션 돌기의 용입정도가 ECV 조립공차에 미치는 영향)

  • Chang, Hee-Seok;Won, Woong-Yeon;Choi, Duk-Jun;Kim, Jong-Ho;Kim, Jin-Sang;Nahm, Tak-Hyun;Kang, Hee-Jong
    • Journal of Welding and Joining
    • /
    • v.30 no.1
    • /
    • pp.78-84
    • /
    • 2012
  • Due to the inherent dimensional uncertainty, tolerances accumulate in the final assembly. Tolerance accumulation has serious effect on the performance of ECV assembly. This paper proposes a method of tolerance accumulation analysis using Monte Carlo simulation, which includes welding process in assemble process. This method can predict the final tolerance distributions of the completed assembly with the prescribed statistical tolerance distribution of each part to be assembled. With the inclusion of welding, another dimensional uncertainties due to partial melting is to be accounted as well. Partial melting of projection height was included in the tolerance propagation analysis. Verification of the proposed method was performed by making use of Monte Carlo simulation. Monte Carlo simulation results showed promising results in that we can predict the final tolerance distributions in advance before actual assembly process of precision machinery.

Development of the Tolerance Design System for a Gear Drive (치차 장치를 위한 공차 설계 시스템 개발)

  • 정태형;정진욱
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2713-2722
    • /
    • 2000
  • When designing a gear drive, designers should specify tolerances reasonably considering accuracy, cost, and manufacturing capability. In field design, however, designers mostly assign adequate tolerance without correlations between parts and assembly, resulting in iterative design dependent on experts know-how. In order to resolve this, the tolerance design system for a cylindrical gear drive is developed both to support tolerance design automation and to synthesize design processes of part and assembly tolerances. In this research, part tolerances are designed with the databases constructed by ISO, Ks, JIS and bearing catalogue, Assemble tolerance, that is, backlash tolerance is designed by synthesizing part design tolerances stochastically using the formulated assembly relations. This system can include part tolerance and fitting accuracy of shaft adn bearing in practical design. In addition, this system provides field-designers with a synthetic guideline for tolerance design of a gear drive.

Determination of Fixture Locations and Welding Points Using Tolerance Analysis of Compliant Assembly (변형 조립체 공차해석 기법을 이용한 판재 용접용 치구 및 응접 점의 위치결정)

  • Lee, Dong-Yul;So, Hyun-Chul;Yim, Hyun-June;Jee, Hae-Seong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.4
    • /
    • pp.263-273
    • /
    • 2007
  • All manufactured parts and tooling have unavoidable variations from their nominal shapes. During assembly, compliant parts are further deformed by relatively rigid assembly tooling. Lack of Knowledge regarding variations and deformations often results in expensive problems. Most current computer-aided design systems are based on ideally sized, ideally located and rigid geometry. This paper proposes a model for the assembly of compliant, non-ideal part. We start by defining tolerance analysis as the process of simulation the variation of a product or a subassembly when given the tolerance of required parts. Analysis is then done by finite element analysis and using the material properties of the actual parts to be assembled. Using the result, estimate the weld process.

SIMULTANEOUS OPTIMIZATION OF TOLERANCE SYNTHESIS IN ASSEMBLY AND COMPONENT DIMENSIONS

  • Kim Young Jin;Cho Byung Rae
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.529-536
    • /
    • 2003
  • The majority of previous studios on tolerance synthesis have viewed the issue as a design methodology to determine optimal component tolerances on behalf of a manufacturer. while meeting given assembly tolerance requirements Although a considerable amount of research has been done on this issue. a couple of important questions still remain unanswered First. how ran a design engineer quantitatively incorporate a customer's perception on a product quality into a tolerance synthesis scheme at the early design stage Second. how ran component tolerances and assembly tolerance be optimized in a simultaneous way? To answer these questions. this article presents the customer-driven concurrent tolerance synthesis which is facilitated by the notion of truncated distribution and the use of mathematical programming techniques. while adopting the major principles of Tagurhl philosophy. The work presented in the article is an effort to gain insight, which can be useful in practice when setting up guidelines for an overall tolerance synthesis.

  • PDF

Tolerance Analysis of Spline Shaft Assembly (스플라인 샤프트 공차해석)

  • Lee, Jang-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.75-83
    • /
    • 2010
  • Every mechanical part for mass production has dimensions with tolerances in engineering drawing. Tolerance is given to guarantee assemble parts together satisfying functional requirements and dimensional constraints. Tolerance is essential factor for standardization of parts or assembly and has huge influence on manufacturing cost. It will be desirable to have tolerances as broad as possible for minimizing manufacturing cost. This paper describes tolerance analysis of u-joint assembly that is a part of automobile steering system. Within the range of tolerances of parts, accumulated effect is estimated by arithmetic calculation, probability theory and Monte carlo simulation. Each result is compared to investigate the method for increasing productivity.

Development of an Efficient Method to Consider Weld Distortion in Tolerance Analysis (용접변형을 고려한 효율적 공차해석 기법 개발)

  • Yim Hyunjune;Lee Dongyul;Lee Jaeyeol;Kwon Ki Eak;Shin Jong-Gye
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1377-1383
    • /
    • 2005
  • A general and efficient methodology has been developed to analyze dimensional variations of an assembly, taking into account of weld distortion. Weld distortion is generally probabilistic because of the random nature of welding parameters such as the welding speed, maximum welding temperature, ambient temperature, etc. The methodology is illustrated through a very simple example of two perpendicular plates fillet-welded to each other. Two steps comprise the methodology: establishment of a weld-distortion database, and tolerance analysis using the database. To establish the database, thermo-elasto-plastic finite element analyses are conducted to compute the weld distortion for all combinations of discrete values of major welding parameters. In the second step of tolerance analysis, the weld distortion retrieved from the database is used in addition to the dimensional tolerances of the parts. As a result of such an analysis, sensitivities of the assembly's dimensional variations to the part tolerances and weld distortion are obtained, which can be help improve the dimensional quality of the assembly.

Methodology of Tolerance Analysis of Deformable Assembly (변형을 고려한 공차분석 방법론)

  • Lee, Kwang-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.6
    • /
    • pp.20-26
    • /
    • 2007
  • The new integrated CAD-CAM systems induce an increasing demand for simulation tools, which are able to simulate industrial part assembly processes by welding, gluing, riveting or bolting(more generally by fastening). Concerning fastened flexible parts, there exist no efficient computational aid on tolerance and methodology available on the field. The first part briefly presents the approach method based on the finite element method for TADA(Tolerance Analysis of Deformable Assemblies). The second part compares the results obtained by simulation using the commercial FEM code with the measurements. The principal elements of dispersion have been identified and studied on an experimental basis in order to test the robustness of the TADA model. This has enabled us to verify the model's possibilities as regards industrial constraints such as the use of incompatible meshes or the use of triangular elements and so on.