• Title/Summary/Keyword: Assembly Simulation

Search Result 591, Processing Time 0.031 seconds

Graphic Simulation of the Multi-joint Manipulator (다관절 조작기의 그래픽 시뮬레이션)

  • 이종열;송태길;김성현;박병석;윤지섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.631-634
    • /
    • 2001
  • In this study, the graphic simulation system of multi joint manipulator is developed to analyze and optimize the remote handling processes for the spent fuel assembly. This system consists of a 3-D graphical modeling system, a device assembling system, and a motion simulation system. To analyze and optimize the processes involved in multi-joint manipulator operation such as NFBC transportation process and bottom nozzle removal process, the virtual work place is implemented using a computer graphic technology. This virtual workcell is exactly same as that of the real environment. This graphic simulation system of the multi-joint manipulator can be effectively used for designing the main processes and maintenance processes of the spent fuel management.

  • PDF

Monte-Carlo Simulation and measuring for Error Analysis of 3-axis SCARA Robot using Observability (관측성을 이용한 3축 SCARA Robot의 오차분석을 위한 Monte-Carlo simulation 및 측정)

  • Ju, Ji-Hun;Chung, Won-Jee;Kim, Jung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.8-14
    • /
    • 2008
  • This paper aims at finding out dominant robot configurations with maximal position errors, which can be attributed to the parameter errors, by using Monte-Carlo simulation for error analysis of a 3-axis SCARA(Selective Compliance Assembly Robot Arm) type robot. In particular, the Monte-Carlo simulation is used for virtually measuring on the position errors, instead of physical measurement. In order to measure the observability of the model parameters with respect to a set of robot configurations, we propose the observability index which is defined as the product of singular values for error propagation matrices. Thus the index can be used for discriminating dominant robot configurations from a set of simulated ones in conjunction with standard deviation of positional errors, This paper analyzed error by robot positional error.

A Molecular Dynamics Simulation on the Self-assembly of ABC Triblok Copolymers. 2. Effects of Block Sequence

  • Jo, Won-Ho;Ko, Min-Jae;Kim, Seung-Hyun
    • Fibers and Polymers
    • /
    • v.3 no.1
    • /
    • pp.8-13
    • /
    • 2002
  • The effect of block sequence on the self-assembly of ABC-type triblock copolymers in the ordered state is investigated using an isothermal-isobaric molecular dynamics simulation. The block sequence has an important effect ,on the ]norphology of ABC triblock copolymers. Different morphologies are observed depending on the block sequence as well as the block composition. The triblock copolymers with the volume fraction of 1 : 1 : 1 ($f_A$=$f_B$=$f_C$= 0.33) show the three phase and four layered lamellar structures irrespective of the block sequence. The $A_{32}$$B_{16}$$C_{32}$triblock copolymer with $f_B$=0.2 shows a morphology In which cylinders of midblock B are formed at the interface between A and C lamellae, whereas the morphology of triblock copolymer $B_{16}$$C_{32}$ $A_{32}$ and $C_{32}$ $A_{32}$ $B_{16}$ show a cylindrical core-shell structure and a lamellar type morphology, respectively. The $A_{20}$$B_{40}$$C_{20}$the triblock copolymer with the block B as a major component shows a tricontinuous structure, whereas both $B_{40}$$C_{20}$$A_{20}$ and $C_{20}$$A_{20}$$B_{40}$ triblock coolymers exhibit the lamellar structures. When the block B has larger volrome fraction with $f_B$=0.75, the matrix is composed of block B, and other two blocks A and C form spherical domains.

Tolerance Analysis and Design of Refrigerator Door System for Functional and Aesthetic Quality of Gap and Flush (갭과 단차의 기능 및 심미적 품질을 고려한 냉장고 도어 시스템의 공차해석 및 설계)

  • Kim, Jinsu;Kim, Jae-Sung;Yim, Hyunjune
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.59-66
    • /
    • 2014
  • The central seam, the vertical 'line' between doors, in the front view of a refrigerator must have its gap and flush within certain ranges to meet functional and aesthetic requirements. The conventional criteria for gap and flush control in the industry are to keep the gap and flush within certain ranges at each of various points along the seam. For aesthetics, however, the uniformity of the gap is also as important because a 'tapered' seam is negatively perceived by human eyes. This paper shows a case study of tolerance design for a refrigerator door system. It presents a step-by-step procedure, which consists of datum flow chain analysis, identification of assembly features, computer modeling of feature tolerances, assembly operations and measurements, tolerance simulation, and tolerance adjustments based on the simulation results. It is found that extra care may need to be used to satisfy the aesthetical criterion for gap uniformity.

Optimization of Geometric Dimension & Tolerance Parameters of Front Suspension System for Vehicle Pulls Improvement (차량 쏠림 개선을 위한 전륜 현가시스템의 기하공차 최적화)

  • Kim, Yong-Suk;Jang, Dong-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.903-912
    • /
    • 2009
  • This study is focused on simulation-based dimensional tolerance optimization process (DTOP) to minimize vehicle pulls by reduction of dimensional variation in front suspension system. In previous studies, the effect of tires and wheel alignment sensitivity have mainly been investigated to eliminate vehicle pulls in nominal design condition without allocating optimal tolerance level for selected components, among various factors regarding vehicle pulls such as vehicle design parameters, vehicle weight balance, tires, and environmental factors. Unfortunately, there are wide variations in the real vehicle, and these have impacted actual vehicle pulls, especially wheel alignment effects from suspension geometry variation has not been considered in the previous studies. In the tolerance design of suspension, tolerance variables with the uncertainty such as parts dimensional variation, assembly process, datum position and direction, and assembly tool tolerance has a great influence on the variation of the suspension dimensional performances. This study introduces total vehicle pull prediction model in considering major key factors for vehicle pull sensitivity. The Monte Carlo-based tolerance analysis model using Taguchi robust method is developed to optimize dimensional tolerance parameters, satisfying on the target variation level.

Compressive and Bending Behaviors of the Shielded Slot Plate Considering Forming Effect for Fuel Cell Application (성형 이력을 고려한 용융탄산염 연료전지용 쉴디드 슬롯 플레이트의 압축 및 굽힘 거동 분석)

  • Lee, C.W.;Yang, D.Y.;Kang, D.W.;Chang, I.G.;Lee, T.W.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.341-347
    • /
    • 2012
  • The metallic bipolar plates of the molten carbonate fuel cell(MCFC) are composed of shielded slot plates and a center-plate. The shielded slot plates support the center-plate and the membrane electrode assembly. Compressive forces are applied to the shielded slot plate in order to increase the contact area between shielded slot plates and the membrane electrode assembly (MEA). In the design of the shielded slot plate, it is necessary to predict the mechanical behavior of the shielded slot plate. The shielded slot plates are manufactured by a three-stage forming process consisting of slitting, preforming and the final forming process. The mechanical behavior of the shielded slot plate is largely affected by the forming process. In this study, the simulation of the three-stage forming process was used to predict the mechanical behavior of the shielded slot plate. The present simulation approach showed good agreements with the experimental results.

Deformation and Residual Stress of Automotive Frame by Welding (용접에 의한 자동차용 Frame의 변형과 잔류 응력 분석)

  • Park, Tae-Won;Kim, Kee-Joo;Han, Chang-Pyung;Lee, Young-Suk;Lim, Jong-Han
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.113-117
    • /
    • 2011
  • The frame for automotive assembly can be deformed and remained on the residual stress due to high temperature thermal attacks when in welding. The frame deformation can be made to problems when in assembly with body and the residual stress can affect the negative effect on durability performance of the automobile. In order to analyze the frame deformation, the simplified test frame which had the similar shape (form) of the real automotive frame was fabricated. The contactless optical 3D scanner was used for the shape difference measurement of the frame between before and after the welding. The FE-model of the test frame was composed and the heat transfer and thermal stress simulation were performed. The simulated results were compared with the measured results for the reference of the frame design. The deformation shape of the frame by simulation was in good agreement with that by the experimental measurement.

Simulations of Self-Assembled Structures in Macromolecular Systems: from Atomistic Model to Mesoscopic Model (고분자 자기조립 구조의 전산 모사: 원자 모델로부터 메조 스케일 모델까지)

  • Huh, June;Jo, Won-Ho
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.453-463
    • /
    • 2006
  • Molecular simulation is an exceptionally useful method for predicting self-assembled structures in various macromolecular systems, enlightening the origins of many interesting molecular events such as protein folding, polymer micellization, and ordering of molten block copolymer. The length scales of those events ranges widely from sub-nanometer scale to micron-scale or to even larger, which is the main obstacle to simulate all the events in an ab initio principle. In order to detour this major obstacle in the molecular simulation approach, a molecular model can be rebuilt by sacrificing some unimportant molecular details, based on two different perspectives with respect to the resolution of model. These two perspectives are generally referred to as 'atomistic' and 'mesoscopit'. This paper reviews various simulation methods for macromolecular self-assembly in both atomistic and mesoscopic perspectives.

Impact of Employing Mass Customization in Shipbuilding (조선에서 대량 맞춤화의 영향)

  • Kwon, Chi-Myung;Lim, Sang-Gyu;Storch, R.L.
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.1
    • /
    • pp.69-79
    • /
    • 2012
  • One of the goals of mass customization is to permit changes in the product to meet specific customer requirements without substantially impacting the cost or delivery schedule. In large assembly manufacturing industries, such as shipbuilding and commercial airplane production, customization takes place by changing components and/or modules, sometimes called interim products. Using shipbuilding as a case study, it is possible to study the impact of such changes using mass customization principles on the schedule. In large assembly manufacturing, mass customization changes would cause changes in engineering time and production time, based on the amount of change required by the customization. This work first proposes a structure for implementing mass customization in shipbuilding and then uses simulation of a simplified, theoretical shipbuilding process to evaluate the impacts of various levels of change on delivery performance.

A Data Burst Assembly Algorithm in Optical Burst Switching Networks

  • Oh, Se-Yoon;Hong, Hyun-Ha;Kang, Min-Ho
    • ETRI Journal
    • /
    • v.24 no.4
    • /
    • pp.311-322
    • /
    • 2002
  • Presently, optical burst switching (OBS) technology is under study as a promising solution for the backbone of the optical Internet in the near future because OBS eliminates the optical buffer problem at the switching node with the help of no optical/electro/optical conversion and guarantees class of service without any buffering. To implement the OBS network, there are a lot of challenging issues to be solved. The edge router, burst offset time management, and burst assembly mechanism are critical issues. In addition, the core router needs data burst and control header packet scheduling, a protection and restoration mechanism, and a contention resolution scheme. In this paper, we focus on the burst assembly mechanism. We present a novel data burst generation algorithm that uses hysteresis characteristics in the queueing model for the ingress edge node in optical burst switching networks. Simulation with Poisson and self-similar traffic models shows that this algorithm adaptively changes the data burst size according to the offered load and offers high average data burst utilization with a lower timer operation. It also reduces the possibility of a continuous blocking problem in the bandwidth reservation request, limits the maximum queueing delay, and minimizes the required burst size by lifting up data burst utilization for bursty input IP traffic.

  • PDF