• Title/Summary/Keyword: Assembly Modeling

Search Result 304, Processing Time 0.025 seconds

Numerical Modeling of Thermoshearing in Critically Stressed Rough Rock Fracture: DECOVALEX-2023 Task G (임계응력 하 거친 암석 균열의 Thermoshearing 수치모델링: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook Park;Chan-Hee Park;Li Zhuang;Jeoung Seok Yoon;Changlun Sun;Changsoo Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.189-207
    • /
    • 2023
  • In the present study, the thermoshearing experiment on a rough rock fracture were modeled using a three-dimensional grain-based distinct element model (GBDEM). The experiment was conducted by the Korea Institute of Construction Technology to investigate the progressive shear failure of fracture under the influence of thermal stress in a critical stress state. The numerical model employs an assembly of multiple polyhedral grains and their interfaces to represent the rock sample, and calculates the coupled thermo-mechanical behavior of the grains (blocks) and the interfaces (contacts) using 3DEC, a DEM code. The primary focus was on simulating the temperature evolution, generation of thermal stress, and shear and normal displacements of the fracture. Two fracture models, namely the mated fracture model and the unmated fracture model, were constructed based on the degree of surface matedness, and their respective behaviors were compared and analyzed. By leveraging the advantage of the DEM, the contact area between the fracture surfaces was continuously monitored during the simulation, enabling an examination of its influence on shear behavior. The numerical results demonstrated distinct differences depending on the degree of the surface matedness at the initial stage. In the mated fracture model, where the surfaces were in almost full contact, the characteristic stages of peak stress and residual stress commonly observed in shear behavior of natural rock joints were reasonably replicated, despite exhibiting discrepancies with the experimental results. The analysis of contact area variation over time confirmed that our numerical model effectively simulated the abrupt normal dilation and shear slip, stress softening phenomenon, and transition to the residual state that occur during the peak stress stage. The unmated fracture model, which closely resembled the experimental specimen, showed qualitative agreement with the experimental observations, including heat transfer characteristics, the progressive shear failure process induced by heating, and the increase in thermal stress. However, there were some mismatches between the numerical and experimental results regarding the onset of fracture slip and the magnitudes of fracture stress and displacement. This research was conducted as part of DECOVALEX-2023 Task G, and we expect the numerical model to be enhanced through continued collaboration with other research teams and validated in further studies.

Mechanical behaviour of waterway culvert structure assembled by precast segments (프리캐스트 세그먼트를 이용한 조립식 수로암거구조물의 역학적 거동 특성)

  • Lee, Gyu-Phil;Hwang, Jae-Hong;Shin, Hyu-Sung;Hong, Se-Kyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.193-200
    • /
    • 2010
  • Due to the characteristic of culvert structure, the standard section of the culvert has been established and applied in field. However, this becomes a limitation in selecting a section design corresponding to various field conditions although it can improve the design and applicability of culvert structure. In order to overcome this limitation, we have developed the design and application technology of culvert structure corresponding to the field conditions that various shapes of culvert structure can be covered by assembly of precast segments. Because the structural characteristics of assembling-type waterway culvert structure, the thickness of structure and amount of reinforcing rods can vary according to the fixation or internal hinge status in the connection part of precast segments. This has a strong influence on the applicability and economic efficiency of culvert structure. Accordingly, in order to suggest a reasonable modeling technique of segment connection parts, this study has conducted the field experiment and numerical analysis. According to the results of field experiment and numerical analysis, the slab, wall and base slab with mortar splice sleeves have shown that the assembling-type of waterway culvert structure behaves like an integrated structure.

Improvement of crossflow model of MULTID component in MARS-KS with inter-channel mixing model for enhancing analysis performance in rod bundle

  • Yunseok Lee;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4357-4366
    • /
    • 2023
  • MARS-KS, a domestic regulatory confirmatory code of Republic of Korea, had been developed by integrating RELAP5/MOD2 and COBRA-TF. The integration of COBRA-TF allowed to extend the capability of MARS-KS, limited to one-dimensional analysis, to multi-dimensional analysis. The use of COBRA-TF was mainly focused on subchannel analyses for simulating multi-dimensional behavior within the reactor core. However, this feature has been remained as a legacy without ongoing maintenance. Meanwhile, MARS-KS also includes its own multidimensional component, namely MULTID, which is also feasible to simulate three-dimensional convection and diffusion. The MULTID is capable of modeling the turbulent diffusion using simple mixing length model. The implementation of the turbulent mixing is of importance for analyzing the reactor core where a disturbing cross-sectional structure of rod bundle makes the flow perturbation and corresponding mixing stronger. In addition, the presence of this turbulent behavior allows the secondary transports with net mass exchange between subchannels. However, a series of assessments performed in previous studies revealed that the turbulence model of the MULTID could not simulate the aforementioned effective mixing occurred in the subchannel-scale problems. This is obvious consequence since the physical models of the MULTID neglect the effect of mass transport and thereby, it cannot model the void drift effect and resulting phasic distribution within a bundle. Thus, in this study, the turbulence mixing model of the MULTID has been improved by means of the inter-channel mixing model, widely utilized in subchannel analysis, in order to extend the application of the MULTID to small-scale problems. A series of assessments has been performed against rod bundle experiments, namely GE 3X3 and PSBT, to evaluate the performance of the introduced mixing model. The assessment results revealed that the application of the inter-channel mixing model allowed to enhance the prediction of the MULTID in subchannel scale problems. In addition, it was indicated that the code could not predict appropriate phasic distribution in the rod bundle without the model. Considering that the proper prediction of the phasic distribution is important when considering pin-based and/or assembly-based expressions of the reactor core, the results of this study clearly indicate that the inter-channel mixing model is required for analyzing the rod bundle, appropriately.

Structural Relationships Among Factors to Adoption of Telehealth Service (원격의료서비스 수용요인의 구조적 관계 실증연구)

  • Kim, Sung-Soo;Ryu, See-Won
    • Asia pacific journal of information systems
    • /
    • v.21 no.3
    • /
    • pp.71-96
    • /
    • 2011
  • Within the traditional medical delivery system, patients residing in medically vulnerable areas, those with body movement difficulties, and nursing facility residents have had limited access to good healthcare services. However, Information and Communication Technology (ICT) provides us with a convenient and useful means of overcoming distance and time constraints. ICT is integrated with biomedical science and technology in a way that offers a new high-quality medical service. As a result, rapid technological advancement is expected to play a pivotal role bringing about innovation in a wide range of medical service areas, such as medical management, testing, diagnosis, and treatment; offering new and improved healthcare services; and effecting dramatic changes in current medical services. The increase in aging population and chronic diseases has caused an increase in medical expenses. In response to the increasing demand for efficient healthcare services, a telehealth service based on ICT is being emphasized on a global level. Telehealth services have been implemented especially in pilot projects and system development and technological research. With the service about to be implemented in earnest, it is necessary to study its overall acceptance by consumers, which is expected to contribute to the development and activation of a variety of services. In this sense, the study aims at positively examining the structural relationship among the acceptance factors for telehealth services based on the Technology Acceptance Model (TAM). Data were collected by showing audiovisual material on telehealth services to online panels and requesting them to respond to a structured questionnaire sheet, which is known as the information acceleration method. Among the 1,165 adult respondents, 608 valid samples were finally chosen, while the remaining were excluded because of incomplete answers or allotted time overrun. In order to test the reliability and validity of the assessment scale items, we carried out reliability and factor analyses, and in order to explore the causal relation among potential variables, we conducted a structural equation modeling analysis using AMOS 7.0 and SPSS 17.0. The research outcomes are as follows. First, service quality, innovativeness of medical technology, and social influence were shown to affect perceived ease of use and perceived usefulness of the telehealth service, which was statistically significant, and the two factors had a positive impact on willingness to accept the telehealth service. In addition, social influence had a direct, significant effect on intention to use, which is paralleled by the TAM used in previous research on technology acceptance. This shows that the research model proposed in the study effectively explains the acceptance of the telehealth service. Second, the research model reveals that information privacy concerns had a insignificant impact on perceived ease of use of the telehealth service. From this, it can be gathered that the concerns over information protection and security are reduced further due to advancements in information technology compared to the initial period in the information technology industry, and thus the improvement in quality of medical services appeared to ensure that information privacy concerns did not act as a prohibiting factor in the acceptance of the telehealth service. Thus, if other factors have an enormous impact on ease of use and usefulness, concerns over these results in the initial period of technology acceptance may become irrelevant. However, it is clear that users' information privacy concerns, as other studies have revealed, is a major factor affecting technology acceptance. Thus, caution must be exercised while interpreting the result, and further study is required on the issue. Numerous information technologies with outstanding performance and innovativeness often attract few consumers. A revised bill for those urgently in need of telehealth services is about to be approved in the national assembly. As telemedicine is implemented between doctors and patients, a wide range of systems that will improve the quality of healthcare services will be designed. In this sense, the study on the consumer acceptance of telehealth services is meaningful and offers strong academic evidence. Based on the implications, it can be expected to contribute to the activation of telehealth services. Further study is needed to assess the acceptance factors for telehealth services, such as motivation to remain healthy, health care involvement, knowledge on health, and control of health-related behavior, in order to develop unique services according to the categorization of customers based on health factors. In addition, further study may focus on various theoretical cognitive behavior models other than the TAM, such as the health belief model.