• Title/Summary/Keyword: Assembled structures

Search Result 232, Processing Time 0.025 seconds

Highly sensitive gas sensor using hierarchically self-assembled thin films of graphene oxide and gold nanoparticles

  • Ly, Tan Nhiem;Park, Sangkwon
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.417-428
    • /
    • 2018
  • In this study, we fabricated hierarchically self-assembled thin films composed of graphene oxide (GO) sheets and gold nanoparticles (Au NPs) using the Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) techniques and investigated their gas-sensing performance. First, a thermally oxidized silicon wafer ($Si/SiO_2$) was hydrophobized by depositing the LB films of cadmium arachidate. Thin films of ligand-capped Au NPs and GO sheets of the appropriate size were then sequentially transferred onto the hydrophobic silicon wafer using the LB and the LS techniques, respectively. Several different films were prepared by varying the ligand type, film composition, and surface pressure of the spread monolayer at the air/water interface. Their structures were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and their gas-sensing performance for $NH_3$ and $CO_2$ was assessed. The thin films of dodecanethiol-capped Au NPs and medium-sized GO sheets had a better hierarchical structure with higher uniformity and exhibited better gas-sensing performance.

Highly Sensitive Trimethylamine Sensing Characteristics of V-doped NiO Porous Structures (바나듐이 도핑된 NiO 다공성 구조의 고감도 Trimethylamine 감응 특성)

  • Park, Sei Woong;Yoon, Ji-Wook;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.218-222
    • /
    • 2016
  • Pure and V-doped NiO porous structures were prepared by the evaporation-induced surfactant assembly and subsequent pyrolysis of assembled structures, and their gas sensing characteristics were investigated. Pure NiO porous structures showed negligible gas responses (S=$R_g/R_a$, $R_g$: sensor resistance in analytic gas; $R_a$: sensor resistance in air) to 5 ppm trimethylamine (S=1.17) as well as other interfering gases such as ethanol, p-xylene, toluene, benzene and formaldehyde (S=1.02-1.13). In contrast, the V-doped NiO porous structures exhibited a high response and selectivity to 5 ppm trimethylamine (S=14.5) with low cross-responses to other interfering gases (S=4.0-8.7) at $350^{\circ}C$. The high gas response of V-doped NiO porous structures to trimethylamine was explained by electronic sensitization, that is, the increase in the chemoresistive variation due to the decrease in the hole concentration. The enhanced selectivity to trimethylamine was discussed in relation to the interaction between basic trimethylamine gas and acidic V catalysts.

Directed Assembly of Block Copolymers for Defect-Free Nanofabrication (블록공중합체 자기조립제어를 통한 무결함 나노구조제작)

  • Shin, Dong-Ok;Jeong, Seong-Jun;Kim, Bong-Hoon;Lee, Hyung-Min;Park, Seung-Hak;Xia, Guodong;Nghiem, Quoc Dat;Kim, Sang-Ouk
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Block copolymers spontaneously assemble into various nanoscale structures such as spheres, cylinders, and lamellar structures according to the relative volumn ratio of each macromolecular block and their overall molecular weights. The self-assembled structures of block copolymer have been extensively investigated for the applications such as nanocomposites, photonic crystals, nanowires, magnetic-storage media, flash memory devices. However, the naturally formed nanostructures of block copolymers contain a high density of defects such that the practical applications for nanoscale devices have been limited. For the practical application of block copolymer nanostructures, a robust process to direct the assembly of block copolymers in thin film geometry is required to be established. To exploit self-assembly of block copolymer for the nanotechnology, it is indispensible to fabricate defect-free self-assembled nanostructure over an arbitrarily large area.

A Study on the Post-Buckling Analysis of Spatial Structures by using Dynamic Relaxation Method (동적이완법을 이용한 공간구조의 후좌굴 해석에 관한 연구)

  • Lee Kyong-Soo;Lee Sang-Ju;Lee Hyong-Hoon;Han Sang-Eul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.175-182
    • /
    • 2005
  • The present study is concerned with the application of dynamic relaxation method in the investigation of the large deflection behavior of spatial structures. This numerical algorithm do not require the computation or formulation of any tangent stiffness matrix. The convergence to the solution is achieved by using only vectorial quantities and no stiffness matrix is required in its overall assembled form. In an effort to evaluate the merits of the methods, extensive numerical studies were carried out on a number of selected structural systems. The advantages of using dynamic relaxation methods, in tracing the post-buckling behavior of spatial structures, are demonstrated.

  • PDF

Two-dimensional Supramolecular Ordering via Hydrogen and Halogen Bondings

  • Yoon, Jong-Keon;Kim, Ho-Won;Jeon, Jeong-Heum;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.11-11
    • /
    • 2010
  • Supramolecualr ordering has been actively studied due to it's possible applications to the fabrication processes of nano-electronic devices. Van der Waals interaction and hydrogen bonding are frequently studied mechanisms for various molecular structures based on non-uniform charge distributions. Halogen atoms in molecules can have electrostatic interactions with similar strength. Big halogen atoms have strong non-uniform charge distributions. To study molecular orderings formed by hydrogen and halogen interactions, we chose a molecular system containing oxygen, hydrogen, and bromine atoms, a bromo-quinone. A two-dimensional molecular network was studied on Au(111) using a low-temperature scanning tunneling microscope. Bromo-quinonemolecules form self-assembled square grids having windmill structures. Their molecular orderings, chiral structures, and defects are explained in terms of hydrogen and halogen interactions.

  • PDF

Phage Litmus: Biomimetic Virus-Based Colorimetric Sensors for Explosive Detection

  • O, Jin-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.90.1-90.1
    • /
    • 2013
  • Nature utilizes various of the colorization process. Some species of birds can express their mood of tempers by changing their collagen structures on skin. For example, turkey can change their skin color by expansion of the collagen structures, which are associated with the distinct color changes. Here, we developed bioinspired virus-based colorimetric sensors which can be genetically tuned for target molecule. Using M 13 bacteriophage, we fabricated responsive self-assembled color matrices composed of quasi-ordered fiber bundle structures. These virus matrices can exhibit color change by stimuli through fiber bundle structure modulation. Upon exposure of volatile organic compounds, the resulting multi-colored matrices exhibited distinct color changes with different ratios that can be recognized by the naked eyes. Using the directed evolutionary approaches, we genetically engineered the virus matrix to incorporate binding motif for explosive detection (i.e., trinitrotoluene (TNT)). Through utilizing a common handheld device (i.e., iPhone), we could distinguish TNT molecules down to 20 ppb in a selective manner. Our novel biomimetic virus colorimetric sensor can overcome current limitation for low response selectivity.

  • PDF

Durability Evaluation Method of Handling Structure using Hand Calculation and Simulation (수계산과 해석을 이용한 핸드링구 내구성 평가 방법 고찰)

  • Cho, Sung-Min;Bang, Hyo-Jung;Kang, Byung-Ik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • Most product structural components are assembled by various members and castings except casting products. In such cases, a particular structure is required to move and fix each component. In particular, the safety uncertainty of heavy product assemblies can be linked to large accidents. Thus, the safety design and evaluation of additional structures have become more important. In the field and factories, these additional structures are called handling structures, which are designed and manufactured. As the types of products produced become more diverse, the design and manufacture of a handling structure are also diversified. The results of each evaluation should be derived. We develop a logical design and evaluation method, which was previously designed based on empirical data, for the handling structure.

Analysis of Optimal Kanban Cycle Time (최적 Kanban 수거 시간에 대한 분석)

  • 이상복
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.4
    • /
    • pp.53-61
    • /
    • 1998
  • In this paper, we take into consideration the optimal cycle time in a kanban system. Even though there are many studios in the literature published in the past. It is rare to fine a paper dealing with kanban cycle time. We consider manufacturing structure configured in the real field and suggest kanban cycle time for the cases of linear, tree assembled, distributed, general and mixed structures. Also we give numerical example for each structure.

  • PDF

Preparation of Self-Assembled Crystalline Microparticles with Bispyridyl Zn-Porphyrin

  • Lee, Da-Hee;Lee, Suk-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1317-1320
    • /
    • 2012
  • Well-defined solid-state microcrystalline structures from bispyridyl Zn-porphyrin have been successfully synthesized. The coordinative interactions between pyridine and Zn are main responsible for this translation of porphyrin molecular building blocks to crystalline microscopic objects. The hexagonal plates are obtained from acetonitrile and rhombus plates are grown from toluene solution. With a simple manipulation during the microcrystal growth, such as growth temperature and time, the morphologies can be controlled by adopting different molecular packing. Consequently, morphologies of microcrystals have been diversified.