• Title/Summary/Keyword: Assembled structures

Search Result 231, Processing Time 0.026 seconds

Experimental study of a pretensioned connection for modular buildings

  • Yu, Yujie;Chen, Zhihua;Chen, Aoyi
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.217-232
    • /
    • 2019
  • Modular steel buildings consist of prefabricated room-sized structural units that are manufactured offsite and installed onsite. The inter-module connections must fulfill the assembly construction requirements and soundly transfer the external loads. This work proposes an innovative assembled connection suitable for modular buildings with concrete-filled steel tube columns. The connection uses pretensioned strands and plugin bars to vertically connect the adjacent modular columns. The moment-transferring performance of this inter-module connection was studied through monotonic and cyclic loading tests. The results showed that because of the assembly construction, the connected sections were separated under lateral bending, and the prestressed inter-module connection performed as a weak semirigid connection. The moment strength at the early loading stage originated primarily from the contact bonding mechanism with the infilled concrete, and the postyield strength depended mainly on the tensioned strands. The connection displayed a self-centering-like behavior that the induced deformation was reversed during unloading. The energy dissipation originated primarily from frictional slipping of the plugin bars and steel strands. The moment transferring ability was closely related to the section dimension and the arrangements of the plugin bars and steel strands. A simplified strength calculation and evaluation method was also proposed, and the effectiveness was validated with the test data.

Synthesis and Application of Magnetoplasmonic Nanoparticles (마그네토플라즈모닉 나노 자성 입자의 합성과 응용)

  • Park, Sejeong;Hwang, Siyeong;Jung, Seonghwan;Gwak, Juyong;Lee, Jaebeom
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.429-434
    • /
    • 2021
  • Magnetic nanoparticles have a significant impact on the development of basic sciences and nanomedical, electronic, optical, and biotech industries. The development of magnetic structures with size homogeneity, magnetization, and particle dispersibility due to high-quality process development can broaden their utilization for separation analysis, structural color optics using surface modification, and energy/catalysts. In addition, magnetic nanoparticles simultaneously exhibit two properties: magnetic and plasmon resonance, which can be self-assembled and can improve signal sensitivity through plasmon resonance. This paper reports typical examples of the synthesis and properties of various magnetic nanoparticles, especially magnetoplasmonic nanoparticles developed in our laboratory over the past decade, and their optical, electrochemical, energy/catalytic, and bio-applications. In addition, the future value of magnetoplasmonic nanoparticles can be reevaluated by comparing them with that reported in the literature.

Hysteretic performance of a novel composite wall panel consisted of a light-steel frame and aerated concrete blocks

  • Wang, Xiaoping;Li, Fan;Wan, Liangdong;Li, Tao
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.861-871
    • /
    • 2021
  • This study aims at investigating the hysteretic performance of a novel composite wall panel fabricated by infilling aerated concrete blocks into a novel light-steel frame used for low-rise residential buildings. The novel light-steel frame is consisted of two thin-wall rectangular hollow section columns and a truss-beam assembled using patented U-shape connectors. Two bare light-steel frames and two composite wall panels have been tested to failure under horizontal cyclic loading. Hysteretic curves, lateral resistance and stiffness of four specimens have been investigated and analyzed. Based on the testing results, it is found that the masonry infill can significantly increase the lateral resistance and stiffness of the novel light-steel frame, about 2.3~3 and 21.2~31.5 times, respectively. Failure mode of the light-steel frame is local yielding of the column. For the composite wall panel, firstly, masonry infill is crushed, subsequently, local yielding may occur at the column if loading continues. Hysteretic curve of the composite wall panel obtained is not plump, implying a poor energy dissipation capacity. However, the light-steel frame of the composite wall panel can dissipate more energy after the masonry infill is crushed. Therefore, the composite wall panel has a much higher energy dissipation capacity compared to the bare light-steel frame.

Behaviour of soil-steel composite bridge with various cover depths under seismic excitation

  • Maleska, Tomasz;Beben, Damian
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.747-764
    • /
    • 2022
  • The design codes and calculation methods related to soil-steel composite bridges and culverts only specify the minimum soil cover depth. This value is connected with the bridge span and shell height. In the case of static and dynamic loads (like passing vehicles), such approach seems to be quite reasonable. However, it is important to know how the soil cover depth affects the behaviour of soil-steel composite bridges under seismic excitation. This paper presents the results of a numerical study of soil-steel bridges with different soil cover depths (1.00, 2.00, 2.40, 3.00, 4.00, 5.00, 6.00 and 7.00 m) under seismic excitation. In addition, the same soil cover depths with different boundary conditions of the soil-steel bridge were analysed. The analysed bridge has two closed pipe-arches in its cross section. The load-carrying structure was constructed as two shells assembled from corrugated steel plate sheets, designed with a depth of 0.05 m, pitch of 0.15 m, and plate thickness of 0.003 m. The shell span is 4.40 m, and the shell height is 2.80 m. Numerical analysis was conducted using the DIANA programme based on the finite element method. A nonlinear model with El Centro records and the time history method was used to analyse the problem.

Optical Characteristics of Near-monolayer InAs Quantum Dots

  • Kim, Yeong-Ho;Kim, Seong-Jun;No, Sam-Gyu;Park, Dong-U;Kim, Jin-Su;Im, In-Sik;Kim, Jong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.293-294
    • /
    • 2011
  • It is known that semiconductor quantum-dot (QD) heterostructures have superior zero-dimensional quantum confinement, and they have been successfully applied to semiconductor laser diodes (QDLDs) for optical communication and infrared photodetectors (QDIPs) for thermal images [1]. The self-assembled QDs are normally formed at Stranski-Krastanov (S-K) growth mode utilizing the accumulated strain due to lattice-mismatch existing at heterointerfaces between QDs and cap layers. In order to increase the areal density and the number of stacks of QDs, recently, sub-monolayer (SML)-thick QDs (SQDs) with reduced strain were tried by equivalent thicknesses thinner than a wetting layer (WL) existing in conventional QDs (CQDs) by S-K mode. Despite that it is very different from CQDs with a well-defined WL, the SQD structure has been successfully applied to QDIP[2]. In this study, optical characteristics are investigated by using photoluminescence (PL) spectra taken from self-assembled InAs/GaAs QDs whose coverage are changing from submonolayer to a few monolayers. The QD structures were grown by using molecular beam epitaxy (MBE) on semi-insulating GaAs (100) substrates, and formed at a substrate temperature of 480$^{\circ}C$ followed by covering GaAs cap layer at 590$^{\circ}C$. We prepared six 10-period-stacked QD samples with different InAs coverages and thicknesses of GaAs spacer layers. In the QD coverage below WL thickness (~1.7 ML), the majority of SQDs with no WL coexisted with a small amount of CQDs with a WL, and multi-peak spectra changed to a single peak profile. A transition from SQDs to CQDs was found before and after a WL formation, and the sublevel of SQDs peaking at (1.32${\pm}$0.1) eV was much closer to the GaAs bandedge than that of CQDs (~1.2 eV). These revealed that QDs with no WL could be formed by near-ML coverage in InAs/GaAs system, and single-mode SQDs could be achieved by 1.5 ML just below WL that a strain field was entirely uniform.

  • PDF

Finite Element Vibration Analysis of Laminated Composite Folded Structures With a Channel Section using a High-order Shear deformation Plate Theory (고차전단변형 판이론을 이용한 채널단면을 갖는 복합적층 절판 구조물의 유한요소 진동 해석)

  • 유용민;장석윤;이상열
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.21-30
    • /
    • 2004
  • This study deals with free vibrations of laminated composite structures with a channel section using finite element method. In this paper, the mixed finite element method using Lagrangian and Hermite interpolation functions is adopted and a high-order plate theory is used to analyze laminated composite non-prismatic folded plates with a channel section more accurately for free vibration. The theory accounts for parabolic distribution of the transverse shear stress and requires no shear correction factors supposed in the first-order plate theory. An 32×32 matrix is assembled to transform the system element matrices from the local to global coordinates using a coordinate transformation matrix, in which an eighth drilling degree of freedom (DOF) per node is appended to the existing 7-DOF system. The results in this study are compared with those of available literatures for the conventional and first-order plate theory. Sample studies are carried out for various layup configurations and length-thickness ratio, and geometric shapes of plates. The significance of the high-order plate theory in analyzing complex composite structures with a channel section is enunciated in this paper.

Construction of a Full-length cDNA Library from Cardamine manshurica Nakai and Characterization of EST Dataset

  • Im, Subin;Lee, Sung-Ho;Kim, Yoon-Young;Kim, Ju-Sang;Kim, Dasom;Lim, Yong Pyo
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • Brassicaceae consists of important species that have significant amounts of metabolites, and many studies have been carried out in order to understand the mechanism that improves the content of these metabolites. In Brassicacea, Cardamine manshurica Nakai is one of the important edible plants and is rich in oil, fiber, and various nutrients. In this study, we constructed cDNA library using leaves from 4 week-old plants and analyzed the ESTs of C. manshurica Nakai. One thousand thirty-nine ESTs were discovered which assembled to form 468 unigenes. The latter contained 116 contigs and 352 singletons. Similarity search of these ESTs with BLASTX revealed similarities with Arabidopsis thaliana 285 (31.9%), Arabidopsis lyrata 172 (19.3%), Capsella rubella 162 (18.1%), and Eutrema salsugineum 137 (15.3%). ESTs were functionally categorized into molecular function, biological process, and cellular component, and each category took 10.6%, 58.5%, and 30.9%, respectively. The functional analysis also found that 94.9% of ESTs showed at least one GO ID. Microsatellite analysis of 468 unigene sequences revealed 225 structures of which Di-, Tri-, Tetra-, Penta-repeats were 35.6% (80/225), 63.1% (142/225), 0.9% (2/225), and 0.4% (1/225), respectively. The results from our study can be a valuable resource for Cardamine research.

Static performance of a new GFRP-metal string truss bridge subjected to unsymmetrical loads

  • Zhang, Dongdong;Yuan, Jiaxin;Zhao, Qilin;Li, Feng;Gao, Yifeng;Zhu, Ruijie;Zhao, Zhiqin
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.641-657
    • /
    • 2020
  • A unique lightweight string truss deployable bridge assembled by thin-walled fiber reinforced polymer (FRP) and metal profiles was designed for emergency applications. As a new structure, investigations into the static structural performance under the serviceability limit state are desired for examining the structural integrity of the developed bridge when subjected to unsymmetrical loadings characterized by combined torsion and bending. In this study, a full-scale experimental inspection was conducted on a fabricated bridge, and the combined flexural-torsional behavior was examined in terms of displacement and strains. The experimental structure showed favorable strength and rigidity performances to function as deployable bridge under unsymmetrical loading conditions and should be designed in accordance with the stiffness criterion, the same as that under symmetrical loads. In addition, a finite element model (FEM) with a simple modeling process, which considered the multi segments of the FRP members and realistic nodal stiffness of the complex unique hybrid nodal joints, was constructed and compared against experiments, demonstrating good agreement. A FEM-based numerical analysis was thereafter performed to explore the effect of the change in elastic modulus of different FRP elements on the static deformation of the bridge. The results confirmed that the change in elastic modulus of different types of FRP element members caused remarkable differences on the bending and torsional stiffness of the hybrid bridge. The global stiffness of such a unique bridge can be significantly enhanced by redesigning the critical lower string pull bars using designable FRP profiles with high elastic modulus.

Cell Structures of Spermatogenesis of Rainbow Trout, Oncorhynchus mykiss in Reproductive Cycles (번식주기(繁殖週期)에 따른 무지개 송어(松魚) 정자형성시(精子形成時) 세포구조(細胞構造)의 변화(變化))

  • Yoon, Jong-Man;Kim, Gye-Woong;Park, Chung-Kil;Roh, Soon-Chang
    • Applied Microscopy
    • /
    • v.24 no.3
    • /
    • pp.55-66
    • /
    • 1994
  • This study was carried out to investigate the histological changes of sperm cells in testis, obtained from 100 of 3-year-old male rainbow trout (Oncorhynchus mykiss) collected and analysed from March in 1992 to February in 1993. Especially, the ultrastructural changes of spermatogonia, primary and secondary spermatocytes, spermatids, and spermatozoa were examined to describe the reproductive cycles of this species. The results obtained in this study were as follows: The ultrastructures of the gonadotrophs largely parallel the cyclical changes in the testes. Each nest of cells belongs to one spermatogenetic stage, although nests at different stages can be found within the one lobule. At first keterochromatin is dispersed and then is condensed. In mature gamete, the nucleus is dense and homogeneous. The nuclear membrane appeared at the beginning of differentiation. In spermatogonia, Sertoli cells are located at the periphery of their cytoplasm. In the primary spermatocytes, the small mitochondria are abundant over the outer cytoplasm. During cell differentiation, the cytoplasm decreases and the nucleus increases. In spermatids, the protein masses moved towards the posterior part of the nucleus. In late spermatids, the two large mitochondria are located over the cytoplasm. In spermatozoa, two spheroidal mitochondria (about 145nm long) are situated in parallel between the nucleus and the axoneme. Spermatozoa mitochondria are assembled into an organized sheath surrounding the outer dense fibres and axoneme of the flagellar midpiece. The two centrioles are quite separate and the central pair and sheath complex of the flagellum is inserted into the base of the distal centriole.

  • PDF

Process of Using BIM for Small-Scale Construction Projects - Focusing on the Steel-frame Work - (소규모 건축공사의 BIM 정보 활용을 위한 프로세스 제안 - 철골공사 중심으로 -)

  • Kim, Jin-Kwang;Yoo, Moo-Young;Ham, Nam-Hyuk;Kim, Jae-Jun;Choi, Chang-Shik
    • Journal of KIBIM
    • /
    • v.8 no.2
    • /
    • pp.41-50
    • /
    • 2018
  • The current study focused on the utilization of building information modeling (BIM) data in steel-frame structures, which help to reduce project durations because they employ prefabricated structural members that are assembled on-site. In addition, a business process model was proposed using BIM data collected during the preconstruction, structural steel fabrication, and on-site construction phases of an actual steel-frame project. The ultimate expectation is that BIM data support at each phase, as well as the increased understanding among project participants, will result in an increase in project management productivity. The results from the current study are summarized as follows: To implement a BIM capable of application to steel-frame projects and data utilization, existing theories were studied to develop the construction project steps, both generally into the preconstruction (A1), steel fabrication (A2), and on-site construction phases, (A3) and specifically into 19 BIM-applicable phases. Based on the derived BIM-applicable phases, the model elements of the BIM object were identified, and the shortcomings of existing steel-frame projects were ameliorated, resulting in an improved data flow model. Moreover, for the proposed BIM data flow to progress efficiently, the BIM specialist needs to be well-acquainted with the phase-specific three-dimensional (3D) model output, and the infrastructure to construct an error-free 3D model must be provided. Based on the actual construction example, the BIM data utilized steel-frame projects - via production reports, clash checks, two-dimensional (2D) drawings, four-dimensional (4D) simulations, and 3D scanning - to make cooperation and communication among participants easier.