• Title/Summary/Keyword: Aspherical surface

Search Result 85, Processing Time 0.029 seconds

Control Method for the Tool Path in Aspherical Surface Grinding and Polishing

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.51-56
    • /
    • 2006
  • This paper proposes a control algorithm, which is verified experimentally, for aspherical surface grinding and polishing. The algorithm provides simultaneous control of the position and interpolation of an aspheric curve. The nonlinear formula for the tool position was derived from the aspheric equation and the shape of the tool. The function was partitioned at specific intervals and the control parameters were calculated at each control section. The position, acceleration, and velocity at each interval were updated during the process. A position error feedback was introduced using a rotary encoder. The feedback algorithm corrected the position error by increasing or decreasing the feed speed. In the experimental verification, a two-axis machine was controlled to track an aspherical surface using the proposed algorithm. The effects of the control and process parameters were monitored. The results demonstrated that the maximum tracking error with tuned parameters was at the submicron level for concave and convex surfaces.

Ceramic Core Processing Technology for the Glass Mold of Aspherical Lenses using High-speed Cutting Machine (고속 가공기를 활용한 비구면 안경렌즈 유리금형용 세라믹코어 가공기술)

  • Ryu, Geun-Man;Kim, Hyo-Sik;Kim, Hong-Tek;Yang, Sun-Choel;Jang, Ki-Soo;Kim, Dong-Ik;Won, Jong-Ho;Kim, Geon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.7-12
    • /
    • 2012
  • Ceramic core processing technology using 5-axis high-speed cutting machine is applied to make the glass molds for aspherical ophthalmic lenses. In the technology, optimum processing conditions for aspherical ceramic molds are based on minimal experimental data of surface roughness. Such surface roughness is influenced by fabricating tools, cutting speed, feed rate, and depth of cut, respectively. In this paper, we present that surface roughness and shape accuracy of aspheric ceramic mold obtained by optimum processing conditions are Pa $0.6184{\mu}m$ and Pt $5.0301{\mu}m$, respectively, and propose that these values are sufficiently possible to apply to making the glass molds for aspherical ophthalmic lenses.

Sub-micron Control Algorithm for Grinding and Polishing Aspherical Surface

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.386-393
    • /
    • 2008
  • A position control method for interpolating aspherical grinding and polishing tool path was reviewed and experimented in a nano precision machine. The position-base algorithm was reformed from the time-base algorithm, proposed in the previous study. The characteristics of the algorithm were in the velocity control loop with position feedback. The aspherical surface was divided by an interval at which each velocity and acceleration were calculated. The theoretical velocity was corrected by position error during processing. In the experiment, a machine was constructed and nano-scale linear encoders were installed at each axis. Relation between process parameters and the variation of position error was monitored and discussed. The best result from optimized parameters showed that the accuracy was 150nm and improved from the previous report.

Design of Smart Phone Camera Lens Using Forbes Aspherical Surface (Forbes 비구면을 사용한 스마트폰 카메라렌즈의 설계)

  • Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.141-145
    • /
    • 2017
  • We design an F/1.8 smart -phone camera lens utilizing he Forbes aspherical-surface equation, which can effectively create a strong asphere, compared to the conventional, standard aspherical equation. We also describe the principal methodology and procedural steps of optical design to achieve specifications.

Full Contact Polishing Method of Aspherical Glass Lens Mold by Airbag Polishing Tool (에어백 공구에 의한 비구면 유리 렌즈 금형의 전면 접촉 연마)

  • Lee, Ho-Cheol;Kim, Jung-Uk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.82-88
    • /
    • 2008
  • Conventional aspherical lens polishing methods by the small tool polishing use aspherical profile and the trajectory of the polishing tool is also controlled. In this paper, new full contact polishing mechanism is suggested to polish aspherical glass lens mold by both airbag polishing tool and eccentric motion. Full contact concept by airbag polishing tool and no position control make the easy polishing setup and do not need aspherical design profile. An aspherical lens polishing machine was made for this study and a verification experiment was performed for surface roughness improvements.

A Study on Ultra Precision Machining for Aspherical Surface of Optical Parts (비구면 광학부품의 초정밀 가공에 관한 연구)

  • Lee, Ju-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.195-201
    • /
    • 2002
  • This paper deals with the precision grinding for aspherical surface of optical parts. A parallel grinding method using the spherical wheel was suggested as a new grinding method. In this method, the wheel axis is positioned at a $\pi$/4 from the Z-axis in the direction of the X-axis. An advantage of this grinding method is that the wheel used in grinding achieves its maximum area, reducing wheel wear and improving the accuracy of the ground mirror surface. In addition, a truing by the CG (curve generating) method was proposed. After truing, the shape of spherical wheel transcribed on the carbon is measured by the Form-Talysurf-120L. The error of the form in the spherical wheel which is the value ${\Delta}x$ and $R{^2}{_y}$ inferred from the measured profile data is compensated by the re-truing. Finally, in the aspherical grinding experiment, the WC of the molding die was examined by the parallel grinding method using the resin bonded diamond wheel with a grain size of #3000. A form accuracy of 0.16${\mu}m$ P-V and a surface roughness of 0.0067${\mu}m$ Ra have been resulted.

The Characteristics of SIL Lens Machining Using Diamond Turning Machine (초정밀가공기를 이용한 SIL 렌즈의 절삭특성)

  • Won, Jong-Ho;Park, Won-Kyoo;Kim, Ju-Hwan;Kim, Geon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.63-68
    • /
    • 2003
  • The aspherical lenses are used as objective lens of optical pickup. To examine the design factor the sample product is made before manufacturing of injection mould of lens. The optimum cutting condition of PMMA lens sample with ultra precision SPDT, the roam spindle speed, the depth of cut, the feedrate are found. The demanded surface roughness 100m Ra, aspherical form error $0.5{\mu}m$ P-V for aspherical lens of optical data storage device are satisfied.

  • PDF

Diamond turning of pick-up lens for optical application (광 정보저장용 픽업 렌즈의 다이아몬드 터닝 가공)

  • 박순섭;김대중;이봉주;김상석;김정호;유영문;김주하
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.525-528
    • /
    • 2003
  • The aspherical lens are used as objective lens of optical pickup. The sample product is made before manufacturing the injection mould of lens to examine the design factor. The optimum cutting conditions of the main spindle speed, the depth of cut, the feed rate are found when we cut PMMA and PC lens sample with ultra-precision SPDT. The demanded surface roughness 10 nm Ra. aspherical form error 0.5 ${\mu}{\textrm}{m}$ P-V for aspherical lens of optical data storage device are satisfied for PMMA. but not satisfied for PC.

  • PDF

Pick-up Lens Manufacturing for Optical application using Diamond Turning Process (다이아몬드 터닝가공을 이용한 광정보저장용 픽업렌즈 제작)

  • Kim, J.H.;Kim, S.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.47-51
    • /
    • 2004
  • The aspherical lens are used as objective lens of optical pickup. The sample product is made before manufacturing the injection mould of lens to examine the design factor. The optimum cutting conditions of the main spindle speed, the depth of cut, the feed rate are found when we cut PMMA and PC lens sample with ultra-precision SPDT. The demanded surface roughness 10 nm Ra, aspherical form error 0.5 ${\mu}m$ P-V for aspherical lens of optical data storage device are satisfied for PMMA, but not satisfied for PC.

  • PDF

Tool Path Control Algorithm for Aspherical Surface Grinding (비구면 가공을 위한 공구 경로 제어 알고리즘)

  • Kim H.T.;Yang H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.100-103
    • /
    • 2005
  • In this study, tool path control algorithm for aspherical surface grinding was derived and discussed. The aspherical surface actually means contact points between lens and tool. Tool positions are generally defined at the center of a tool, so there is difference between tool path and lens surface. The path was obtained from contact angle and relative position from the contact point. The angle could be calculated after differentiating an aspheric equation and complex algebraic operations. The assumption of the control algorithm was that x moves by constant velocity while z velocity varies. X was normal to the radial direction of lens, but z was tangential. The z velocities and accelerations were determined from current error and next position in each step. In the experiment, accuracy of the control algorithm was checked on a micro-precision machine. The result showed that the control error tended to be diminished when the tool diameter increased, and the error was under sub-micro level.

  • PDF