• Title/Summary/Keyword: Aspergillus oryzae koji

Search Result 84, Processing Time 0.02 seconds

Evaluating the Headspace Volatolome, Primary Metabolites, and Aroma Characteristics of Koji Fermented with Bacillus amyloliquefaciens and Aspergillus oryzae

  • Seo, Han Sol;Lee, Sunmin;Singh, Digar;Park, Min Kyung;Kim, Young-Suk;Shin, Hye Won;Cho, Sun A;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1260-1269
    • /
    • 2018
  • Production of good Koji primarily depends upon the selection of substrate materials and fermentative microflora, which together influence the characteristic flavor and aroma. Herein, we performed comparative metabolomic analyses of volatile organic compounds (VOCs) and primary metabolites for Koji samples fermented individually with Bacillus amyloliquefaciens and Aspergillus oryzae. The VOCs and primary metabolites were analyzed using headspace solid phase microextraction (HS-SPME) followed by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). In particular, alcohols, ketones, and furans were mainly detected in Bacillus-fermented Koji (Bacillus Koji, BK), potentially due to the increased levels of lipid oxidation. A cheesy and rancid flavor was characteristic of Bacillus Koji, which is attributable to high content of typical 'off-flavor' compounds. Furthermore, the umami taste engendered by 2-methoxyphenol, (E,E)-2,4-decadienal, and glutamic acid was primarily detected in Bacillus Koji. Alternatively, malty flavor compounds (2-methylpropanal, 2-methylbutanal, 3-methylbutanal) and sweet flavor compounds (monosaccharides and maltol) were relatively abundant in Aspergillus-fermented Koji (Aspergillus Koji, AK). Hence, we argue that the VOC profile of Koji is largely determined by the rational choice of inocula, which modifies the primary metabolomes in Koji substrates, potentially shaping its volatolome as well as the aroma characteristics.

Taxonomy of Yellow koji mold (Aspergillus flavus/oryzae) in Korea

  • Hong, Seung-Beom;Lee, Mina;Kim, Dae-Ho;Chung, Soo-Hyun;Samson, Robert A.
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.05a
    • /
    • pp.25-25
    • /
    • 2014
  • Koji molds are comprised of yellow, black and white. Black and white koji molds were recently re-visited by this author and it is concluded that they consists of Aspergillus luchuesnsis, A. niger and A. tubingensis, and the most important species for alcoholic beverage production is A. luchuensis. In the case of yellow koji mold, it is comprised of Aspergillus oryzae, A. sojae and A. tamari. In the case of A. sojae, the species is scarcely isolated from nature and rarely used for industry in Korea. Aspergillus tamari is often isolated from traditional Korean Meju, a fermented soybean product, and the classification of the species is clear. However, in the case of A. oryzae, differentiation between A. oryzae and A. flavus is still in controversy. In this study, we collected 415 strains of Aspergillus flavus/oryzae complex from air, rice straw, soybean, corn, peanut, arable soil and Meju in Korea and we examined the aflatoxin producing capacity of the strains. The norB-cypA, omtA and aflR genes in the aflatoxin biosynthesis gene cluster were analyzed. We found that 367 strains (88.4%) belonged to non-aflatoxigenic group (Type I of norB-cypA, IB-L-B-, IC-AO, or IA-L-B- of omtA, and AO type of aflR), and only 48 strains (11.6%) belonged to aflatoxin-producible group (Type II of norB-cypA, IC-L-B+/B- or IC-L-B+ of omtA, and AF type of aflR). In the case of A. flavus/oryzae strains from Meju, almost strains (178/192, 92.7%) belonged to non-aflatoxigenic group and only 14 strains (7.3 %) belonged to aflatoxin-producible group. It is proposed in this study that non-aflatoxigenic strain from Meju is classified as A. oryzae, considering that Meju is food material.

  • PDF

Quality Improvement of Kochujang Using Cordyceps sp. (동충하초를 이용한 고추장의 품질개선)

  • Kwon, Dong-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.81-85
    • /
    • 2004
  • Quality characteristics of kochujang made with Aspergillus oryzae-and/or Cordyceps sp.-inoculated koji were investigated. Protease activity of Cordyceps sp.-inoculated koji was higher than that of A. oryzae-inoculated one. Sensory evaluation showed that kochujang made with mixture of A. oryzae-and Cordyceps sp.-inoculated koji (70 : 30, w/w) was superior to others.

Metabolite Profiling and Bioactivity of Rice Koji Fermented by Aspergillus Strains

  • Kim, Ah-Jin;Choi, Jung-Nam;Kim, Ji-Young;Kim, Hyang-Yeon;Park, Sait-Byul;Yeo, Soo-Hwan;Choi, Ji-Ho;Liu, Kwang-Hyeon;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.100-106
    • /
    • 2012
  • In this study, the metabolite profiles of three Aspergillus strains during rice koji fermentation were compared. In the partial least squares discriminant analysis-based gas chromatography-mass spectrometry data sets, the metabolite patterns of A. oryzae (KCCM 60345) were clearly distinguished from A. kawachii (KCCM 60552) and only marginal differences were observed for A. oryzae (KCCM 60551) fermentation. In the 2 days fermentation samples, the overall metabolite levels of A. oryzae (KCCM 60345) were similar to the A. oryzae (KCCM 60551) levels and lower than the A. kawachii (KCCM 60552) levels. In addition, we identified discriminators that were mainly contributing tyrosinase inhibition (kojic acid) and antioxidant activities (pyranonigrin A) in A. oryzae (KCCM 60345) and A. kawachii (KCCM 60552) inoculated rice koji, respectively. In this study, we demonstrated that the optimal inoculant Aspergillus strains and fermentation time for functional rice koji could be determined through a metabolomics approach with bioactivity correlations.

Fermentation Characteristics of Koji inoculated with Cordyceps sp. (동충하초를 이용한 코오지의 발효특성)

  • 권동진
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.46-50
    • /
    • 2002
  • To investigate the quality of Koji produced by Cordyceps sp., a mixed culture of Aspergillus oryzae and the Cordyceps sp. were inoculated in Koji making. Viable cell counts and counts of fungi spore during Koji making for 120 hours were increased rapidly within 24-48 hours, after then their changes were not shown significantly during Koji making. The activities of amylase and protease in Koji inoculated with the mixed culture of A. oryzae and Cordyceps sp. were superior to one with A. oryzae only. The sensory evaluation on the Koji with 0.5% (w/w) A. oryzae and 0.5% (w/w) Cordyceps sp. were evaluated to be superior to ones. The best quality of Koji is prepared from the mixture of Cordyceps sp. and A. oryzae with the ratio of 0.5% and 0.5% (w/w).

Establishment of optimal soybean Koji manufacturing conditions (콩 코오지의 최적 제조조건 설정)

  • Kim, Do-Yoon;Park, Geuk-Yeol;Jang, Sang-Won;Hong, Seong-Cheol;Kwon, Dong-Jin
    • Food Science and Preservation
    • /
    • v.20 no.3
    • /
    • pp.379-385
    • /
    • 2013
  • To establish the optimal manufacturing conditions of soybean koji, soybean Koji prepared with Aspergillus oryzae 6-M-1 and Bacillus subtilis 3-B-1 isolated from traditional Korean meju. During 7 days of making Koji, the amount of amino-type nitrogen was getting more increase. The amount of amino-type nitrogen of Koji prepared with A. oryzae 6-M-1 was 686.16 mg% (w/w), that of Koji with B. subtilis 3-B-1 was 643.46 mg% (w/w) at seventh day of making Koji. The ${\alpha}$-amylase activity of Koji prepared with A. oryzae 6-M-1 was 1472.54 unit/g, that of Koji with B. subtilis 3-B-1 was 791.00 units/g on the seventh day of the making. The acidic protease activity of Koji prepared with A. oryzae 6-M-1 was 309.00 unit/g, that of Koji with B. subtilis 3-B-1 was 135.88 unit/g at 7th day of making. The amount of amino-type nitrogen and enzyme activities of soybean Koji prepared with A. oryzae 6-M-1 and B. subtilis 3-B-1 were produced more than those of wheat flour Koji made in factory. Sensory evaluation on a commercial doenjang and doenjangs prepared with A. oryzae 6-M-1 and B. subtilis 3-B-1 was not significantly different at p<0.05.

Studies on Koji for Soy Sauce Brewing (Part. 3) (장류용 강력국균에 관한 연구 3)

  • 이계호;장건형
    • Korean Journal of Microbiology
    • /
    • v.3 no.2
    • /
    • pp.9-14
    • /
    • 1965
  • The enzyme-producing potentials of industrially important strains of Aspergillus spp. were studied. Irradiation of three original isolates of Aspergillus oryzae to ultra-violet rays resulted in the production of mutants which differed from the parent riboflavin and vitamin $B_{12}$ in culture media. 1. Irradition three strains of Aspergillus oryzae to ultraviolet light produced mutants and two strains of them were selected for soy sauce brewing. 2. The two strains are the physiological mutants of Aspergillus oryzae. Both were found to have superior enzyme activity to their relatives. 3. Aspergillus oryzae UV-induced mutant 172-722 and 569-713 were more powerful than others in the production of riboflavin and vitamin $B_{12}$. The enzyme activity of these strain were high and decreased only slightly even in 20 percent solution of NaCl. 4. Aspergillus oryzae UV-induced mutant 172-722 had more powerful protease producibility in wheat bran media than in modified Czapek's solution. On the contrary, Aspergillus oryzae UV-induced mutant 569-713 had more powerful producibility of saccharogenic and dextrinogenic amylase in modified Czapek's solution than in mold bran. 5. Aspergillus oryzae UV-induced mutant 172-722 formed the spore rapidly and Aspergillus oryzae UV-induced mutant 569-713 did ordinarily. 6. It is found from the results that Aspergillus oryzae UV-induced mutant 172-722 is valuable material for the manufacture of soy sauce because of its high protease activity in 20 percent solution of NaCl. Aspergillus oryzae UV-induced mutant 569-713 is suitable for soy bean mash and for fermented red pepper sauce for its high saccharogenic and dextrinogenic amylase activity in 20 percent solution of sodium chloride.

  • PDF

Physicochemical Properties of Kochujang Prepared by Bacillus sp. Koji (Bacillus sp. koji가 고추장의 품질 특성에 미치는 영향)

  • Kim, Dong-Han;Choi, Hee-Jeong
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1174-1181
    • /
    • 2003
  • A part of Aspergillus oryzae koji was replaced with Bacillus sp. koji to improve the quality of kochujang, and the resulting effects on enzyme activities, microbial characteristics, and physicochemical properties were investigated during fermentation. The activity of amylase was higher in the kochujang prepared with Asp. oryzae koji. The activity of protease increased as the ratio of Bacillus. sp. koji increased. Viable cell counts of yeast and bacteria of the kochujang increased with increasing ratio of Bacillus sp. koji. The Hunter a-values of the Bacillus sp. koji kochujang were higher, and the degree of increase in the total color difference $({\Delta}\;E)$ was lower in the Bacillus sp. koji group. Consistency and water activity of the kochujang prepared with Bacillus sp. koji was higher, and the pH and titratable acidity of the kochujang also changed slightly. As the ratio of Asp. oryzae koji increased, sugar content decreased. However, the ethanol content of the kochujang did not significantly change. Amino nitrogen content of the kochujang increased, while ammonia nitrogen content decreased as the ratio of Bacillus sp. koji increased. After 12 weeks of fermentation, the result of sensory evaluation showed that C kochujang (75% of Asp. oryzae koji replaced by Bacillus sp.) was more acceptable (p<0.05) than the other groups in taste, color, flavor, and overall acceptability.

Characterization of Nonaflatoxigenic Aspergillus flavus/oryzae Strains Isolated from Korean Traditional Soybean Meju

  • Sang-Cheol Jun;Yu-Kyung Kim;Kap-Hoon Han
    • Mycobiology
    • /
    • v.50 no.6
    • /
    • pp.408-419
    • /
    • 2022
  • Filamentous fungi that could be classified into Aspergillus flavus/oryzae were isolated from traditionally fermented meju commercially available in Korea. The samples were analyzed for aflatoxin B1 and ochratoxin A contamination by HPLC; however, no toxin was detected. In addition, fungal and bacterial metagenomic sequencing were performed to analyze the microbial distribution in the samples. The results revealed that the distribution and abundance of fungi and bacteria differed considerably depending on the production regions and fermentation conditions of the meju samples. Through morphological analysis, ITS region sequencing, and assessment of the aflatoxin-producing ability, a total of 32 A. flavus/oryzae strains were identified. PCR analysis of six regions with a high mutation frequency in the aflatoxin gene cluster (AGC) revealed a total of six types of AGC breaking point patterns. The A. flavus/oryzae strains did not exhibit the high amylase activity detected in the commercial yellow koji strain (starter mold). However, their peptidase and lipase activities were generally higher than that of the koji isolates. We verified the safety of the traditionally fermented meju samples by analyzing the AGC breaking point pattern and the enzyme activities of A. flavus/oryzae strains isolated from the samples. The isolated strains could possibly be used as starter molds for soybean fermentation.

Conditions for the Production of Amylase and Protease in Making Wheat Flour Nuluk by Aspergillus oryzue L2 (Aspergillus oryzae L2에 의한 밀가루 누룩 제조시 Amylase와 Pretense의 생산조건)

  • 오명환
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.2
    • /
    • pp.89-95
    • /
    • 1993
  • A Nuluk, a Korean traditional Koji for brewing, was made with wheat flour and Aspergillus oryzae L2 which had a good aroma and strong abilities In producing saccharogenic and dextrogenic enzymes. The cultural conditions for the production of saccharogenic and proteolytic enzymes were tested. The productivity of dextrogenic enzyme was improved when Nuluk was made with unsteamed wheat flour as compared with steamed one, but that of proteolytic enzyme was reduced. The addition of water containing 0.5% hydrochloric acid was unfavorable for the production of those two enzymes. The optimum ratio of water added to wheat flour for the production of those two enzymes was 28$^{\circ}C$ on the basis of wheat flour, The productivity of saccharogenic enzyme was enhanced when the Nuluk was molded after 20 hours of precultivation, but that of proteolytic enzyme was reduced as compared with no molding. The optimum temperatures for the production of saccharogenic enzyme and proteolytic enzyme were 36$^{\circ}C$ and 28$^{\circ}C$, respectively.

  • PDF