Browse > Article
http://dx.doi.org/10.4014/jmb.1106.06033

Metabolite Profiling and Bioactivity of Rice Koji Fermented by Aspergillus Strains  

Kim, Ah-Jin (Department of Bioscience and Biotechnology, BMIC, Konkuk University)
Choi, Jung-Nam (Department of Bioscience and Biotechnology, BMIC, Konkuk University)
Kim, Ji-Young (Department of Bioscience and Biotechnology, BMIC, Konkuk University)
Kim, Hyang-Yeon (Department of Bioscience and Biotechnology, BMIC, Konkuk University)
Park, Sait-Byul (Department of Bioscience and Biotechnology, BMIC, Konkuk University)
Yeo, Soo-Hwan (Fermentation and Food Processing Division, National Academy of Agricultural Science)
Choi, Ji-Ho (Fermentation and Food Processing Division, National Academy of Agricultural Science)
Liu, Kwang-Hyeon (College of Pharmacy, Kyungpook National University)
Lee, Choong-Hwan (Department of Bioscience and Biotechnology, BMIC, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.1, 2012 , pp. 100-106 More about this Journal
Abstract
In this study, the metabolite profiles of three Aspergillus strains during rice koji fermentation were compared. In the partial least squares discriminant analysis-based gas chromatography-mass spectrometry data sets, the metabolite patterns of A. oryzae (KCCM 60345) were clearly distinguished from A. kawachii (KCCM 60552) and only marginal differences were observed for A. oryzae (KCCM 60551) fermentation. In the 2 days fermentation samples, the overall metabolite levels of A. oryzae (KCCM 60345) were similar to the A. oryzae (KCCM 60551) levels and lower than the A. kawachii (KCCM 60552) levels. In addition, we identified discriminators that were mainly contributing tyrosinase inhibition (kojic acid) and antioxidant activities (pyranonigrin A) in A. oryzae (KCCM 60345) and A. kawachii (KCCM 60552) inoculated rice koji, respectively. In this study, we demonstrated that the optimal inoculant Aspergillus strains and fermentation time for functional rice koji could be determined through a metabolomics approach with bioactivity correlations.
Keywords
Rice koji; metabolite profiling; Aspergillus; gas chromatography-mass spectrometry; tyrosinase inhibition activity; antioxidant activity;
Citations & Related Records
연도 인용수 순위
1 Arnstein, H. R. V. and R. Bentley. 1953. The biosynthesis of kojic acid. 1. Production from [1-$^{14}C$] and [3:4-$^{14}C_2$] glucose and [2-$^{14}C$]-1:3-dihydroxyacetone. Biochem. J. 54: 493-508.   DOI
2 Bentley, R. 2006. From miso, sake and shoyu to cosmetics: A century of science for kojic acid. Nat. Prod. Rep. 23: 1046-1062.   DOI
3 Benzie, I. F. F. and J. J. Strain. 1996. Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 239: 70-76.   DOI
4 Blandino, A., M. E. Al-Aseeri, S. S. Pandiella, D. Cantero, and C. Webb. 2003. Cereal-based fermented food and beverages. Food Res. Int. 36: 527-543.   DOI
5 Brennan, L. 2008. Session 2: Personalised nutrition metabolomic applications in nutritional research. Proc. Nutr. Soc. 67: 404-408.   DOI
6 Burdock, G. A., M. G. Soni, and I. G. Carabin. 2001. Evaluation of health aspects of kojic acid in food. Regul. Toxicol. Pharmacol. 33: 80-101.   DOI
7 Buscher, J. M., D. Czernik, J. C. Ewald, U. Sauer, and N. Zanboni. 2009. Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal. Chem. 81: 2135-2143.   DOI
8 Dietz, B. M., Y. H. Kang, G. Liu, A. L. Eggler, P. Yao, L. R. Chadwick, et al. 2008. Xanthohumol isolated from Humulus lupulus inhibits menadione-induced DNA damage through induction of quinone reductase. Chem. Res. Toxicol. 18: 1296-1305.
9 Jonsson, P., J. Gullberg, A. Nordstrom, M. Kusano, M. Kowalczyk, M. Syostrom, and T. A. Moritz. 2004. A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Anal. Chem. 76: 1738-1745.   DOI
10 Justesen, U., P. Knuthsen, and T. Leth. 1998. Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. J. Chromatogr. A 799: 101-110.   DOI
11 Kim, A. J., J. N. Choi, J. Y. Kim, S. B. Park, S. H. Yeo, J. H. Choi, and C. H. Lee. 2010. GC-MS based metabolite profiling of rice koji fermentation by various fungi. Biosci. Biotechnol. Biochem. 74: 2267-2272.   DOI
12 Lee, J. E., G. S. Hwang, C. H. Lee, and Y. S. Hong. 2009. Metabolomics reveals alterations in both primary and secondary metabolites by wine bacteria. J. Agric. Food Chem. 57: 10772-10783.   DOI
13 Kim, J. H., S. H. Baek, D. H. Kim, T. Y. Choi, T. J. Yoon, J. S. Hwang, M. R. Kim, H. J. Kwon, and C. H. Lee. 2008. Downregulation of melanin synthesis by haginin A and its application to in vivo lightening model. J. Invest. Dermatol. 128: 1227-1235.   DOI
14 Ku, K. M., J. N. Choi, J. Y. Kim, J. K. Kim, L. G. Yoo, S. J. Lee, Y. S. Hong, and C. H. Lee. 2010. Metabolomics analysis reveals the compositional differences of shade grown tea (Camellia sinensis L.). J. Agric. Food Chem. 58: 418-426.   DOI
15 Ku, K. M., J. Y. Kim, H. J. Park, K. H. Liu, and C. H. Lee. 2010. Application of metabolomics in the analysis of manufacturing type of pu-erh tea and composition changes with different post fermentation year. J. Agric. Food Chem. 58: 345-352.   DOI
16 Lee, M. Y., J. H. Kim, J. N. Choi, J. Y. Kim, G. S. Hwang, and C. H. Lee. 2010. The melanin synthesis inhibition and radical scavenging activities of compounds isolated from the aerial Part of Lespedeza cyrtobotrya. J. Microbiol. Biotechnol. 20: 988-994.   DOI
17 Machida, M., O. Yamada, and K. Gomi. 2008. Genomics of Aspergillus oryzae: Learning from the history of koji mold and exploration of its future. DNA Res. 15: 173-183.   DOI
18 Miyake, Y., C. Ito, M. Itoigawa, and T. Osawa. 2007. Isolation of the antioxidant pyranonigrin-A from rice mold starters used in the manufacturing process of fermented foods. Biosci. Biotechnol. Biochem. 71: 2515-2521.   DOI
19 Nurgel, C. and G. Pickering. 2005. Contribution of glycerol, ethanol and sugar to the perception of viscosity and density elicited by model white wines. J. Texture Stud. 36: 303-323.   DOI
20 Nigam, P. and D. Singh. 1995. Enzyme and microbial systems involved in starch processing. Enzyme Microb. Technol. 17: 770-778.   DOI
21 Ogawa, A., Y. Wakisaka, T. Tanaka, T. Sakiyama, and K. Nakanishi. 1995. Development of a cylindrical apparatus for membrane-surface liquid culture and production of kojic acid using Aspergillus oryzae NRRL484. J. Ferment. Bioeng. 80: 41-45.   DOI
22 Oikawa, A., F. Matsuda, M. Kusano, Y. Okazaki, and K. Saito. 2008. Rice metabolomics. Rice 1: 63-71.   DOI
23 Pongsuwan, W., E. Fukusaki, T. Bamba, T. Yonetani, T. Yamahara, and A. Kobayashi. 2007. Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting. J. Agric. Food Chem. 55: 231-236.   DOI
24 Poutanen, K. 1997. Enzymes: An important tool in the improvement of the quality of cereal foods. Trends Food Sci. Technol. 8: 300-306.   DOI
25 Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237.   DOI
26 Shemidt, A. L., C. R. Curtis, and G. A. Bean. 1977. Electrophoretic comparisons of mycelial enzymes from aflatoxin-producing and non-producing strains of Aspergillus flavus and Aspergillus parasiticus. Can. J. Microbiol. 23: 60-67.   DOI
27 Shu, X. L., T. Frank, Q. Y. Shu, and K. H. Engel. 2008. Metabolite profiling of germinating rice seeds. J. Agric. Food Chem. 56: 11612-11620.   DOI
28 Suganuma, D., K. Fujita, and K. Kitahara. 2007. Some distinguishable properties between acid-stable and neutral types of [alpha]-amylases from acid-producing koji. J. Biosci. Bioeng. 5: 353-362.
29 Wishart, D. S. 2008. Metabolomics: Applications to food science and nutrition research. Trends Food Sci. Technol. 19: 482-493.   DOI