• Title/Summary/Keyword: Aspen Chromatography Simulation

Search Result 13, Processing Time 0.016 seconds

Simulation of D-limonene Separation from Mandarine Extract in Simulated Moving Bed (SMB) (감귤 추출물로부터 D-리모넨 분리를 위한 유사 이동층 크로마토그래피(SMB) 전산모사)

  • Kim, Tae Ho;Ko, Kwan Young;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.81-88
    • /
    • 2016
  • Limonene is orange flavored natural material that is mainly contained in mandarine and lemon peels. D-limonene was extracted from cold-storaged mandarine peel by using Soxhlet extractor at $120^{\circ}C$ for 2 hours with ethanol as solvent. Henry constants of d-limonene and impurity were calculated as $H_{Lim}=8.55$ and $H_{imp}=0.223$ from the result of HPLC analysis. 4-bed SMB of limonene simulation with $0.46{\times}25cm$ columns was conducted by using Aspen chromatography program. Then effective condition for purity was found by changing $m_2$ and $m_3$ values in triangle diagram. The highest purity was 98.59% at $m_2=2.57$, $m_3=9.55$. For this case, feed, desorbent, extract, and raffinate flow rates were 1 mL/min, 1.19 mL/min, 0.857 mL/min and 1.34 mL/min, respectively. Scale-up simulation was also conducted by increasing column diameter from 0.46 cm to 1.6 cm for getting the same efficiency. The increased flow rates were 12 mL/min, 14 mL/min, 10 mL/min, and 16 mL/min for feed, desorbent, extract, and raffinate. It was possible to scale-up with maintaining same limonene purity because linear isotherms of limonene and impurity were assumed.

Simulation of (R)- and (S)- Ketoprofen Separation in Simulated Moving Bed (SMB) ((R)-케토프로펜과 (S)- 케토프로펜 분리를 위한 유사 이동층 크로마토그래피의 전산모사)

  • Lee, Il Song;Lee, In Su;Kim, In Ho
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.250-262
    • /
    • 2014
  • A simulation study for finding purity changes of extract and raffinate as well as the best purity of (S)-ketoprofen in simulated moving bed (SMB) was performed with changing parameters of $m_2$ and $m_3$ from triangle theory. Aspen simulator allowed separation process simulation of (R)- and (S)-ketoprofen in SMB and compared 4-bed SMB and 8-bed SMB based on the same Henry constant and mass transfer coefficient. The 4-bed SMB consisted of 4 columns (200 mm of length, 10 mm of diameter) and the 8-bed SMB constructed by 8 columns (100 mm of length, 10 mm of diameter), and therefore total column length was made the same as 800 mm. Considering purities of both (R)-and (S)-ketoprofen, both 4-bed SMB and 8-bed SMB had the best purity when $m_2$ and $m_3$ were on 12.0 and 13.0 in the center of triangle. Taking only (S)-ketoprofen into account, 4-bed SMB as well as 8-bed SMB had the best purity when $m_2$ and $m_3$ were on 10.9 and 12.6 in the left outside triangle, and their purities were 93.3 % for 4-bed SMB and 96.9 % for 8-bed SMB.

Comparing the Performance of One-column Process and Four-zone Simulated Moving Bed by Computer Simulation

  • Kim Young Sik;Lee Chong Ho;Wankat Phillip C.;Koon Yoon Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.5
    • /
    • pp.362-368
    • /
    • 2004
  • A new one-column chromatography process, analogous to a four-zone simulated moving bed (SMB), was presented. The basic principle of the process was identical to that of a four-zone SMB. The process consisted of one chromatographic column and four tanks, instead of the four columns in the four-zone SMB (1-1-1-1), and has been used for the separation of two amino acids, phenylalanine and tryptophan, using an ion exchange resin. The operating parameters for the one-column process and four-zone SMB were obtained from equilibrium theory. Computer simulations were used to compare the performances of the new one column process to that of the general four-zone SMB, using Aspen $Chromatography^{TM}$ v 11.1. The differences between the one-column and SMB processes in terms of the purities and yields of phenylalanine and tryptophan were less than 4 and about $6\%$, respectively. The lower purities of the one-column process were due to the loss of the developed concentration profiles in the column when the liquid was stored in tanks. The one-column process gave great flexibility, and would be useful for reconstructing an existing conventional chromatography process to one of a SMB.