• 제목/요약/키워드: AspectJ

검색결과 446건 처리시간 0.026초

구형 투척 로봇의 전방향 충격흡수 구조 설계 및 동적 자세 안정화 (Design of Omnidirectional Shock Absorption Mechanism and Stabilizing Dynamic Posture of Miniature Sphere Type Throwing Robot)

  • 정원석;김영근;김수현
    • 제어로봇시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.281-287
    • /
    • 2016
  • In this paper, we propose a novel compact surveillance throwing robot which has an omnidirectional shock absorption mechanism and an active control part of wheel treads to stabilize the dynamic posture of a miniature sphere type throwing robot. This throwing robot, which weighs 1.14kg and is 110mm in height, is designed in a spherical shape to be easily grabbed for throwing. Also, the omnidirectional shock absorbing aspect is designed using several leaf springs connected with inner and outer wheels. The wheel treads control part consists of a link mechanism. Through the field experiments, this robot is validated to withstand higher than 17Ns of omnidirectional impulse and increase the stabilized max speed three times from 11 rad/s to 33rad/s by increasing wheel treads.

HOT CELL RENOVATION IN THE SPENT FUEL CONDITIONING PROCESS FACILITY AT THE KOREA ATOMIC ENERGY RESEARCH INSTITUTE

  • YU, SEUNG NAM;LEE, JONG KWANG;PARK, BYUNG SUK;CHO, ILJE;KIM, KIHO
    • Nuclear Engineering and Technology
    • /
    • 제47권6호
    • /
    • pp.776-790
    • /
    • 2015
  • Background: The advanced spent fuel conditioning process facility (ACPF) of the irradiated materials examination facility (IMEF) at the Korea Atomic Energy Research Institute (KAERI) has been renovated to implement a lab scale electrolytic reduction process for pyroprocessing. The interior and exterior structures of the ACPF hot cell have been modified under the current renovation project for the experimentation of the electrolytic reduction process using spent nuclear fuel. The most important aspect of this renovation was the installation of the argon compartment within the hot cell. Method: For the design and system implementation of the argon compartment system, a full-scale mock-up test and a three-dimensional (3D) simulation test were conducted in advance. The remodeling and repairing of the process cell (M8a), the maintenance cell (M8b), the isolation room, and their utilities were also planned through this simulation to accommodate the designed argon compartment system. Results and conclusion: Based on the considered refurbishment workflow, previous equipment in the M8 cell, including vessels and pipes, were removed and disposed of successfully after a zoning smear survey and decontamination, and new equipment with advanced functions and specifications were installed in the hot cell. Finally, the operating area and isolation room were also refurbished to meet the requirements of the improved hot cell facility.

Evidential Analytic Hierarchy Process Dependence Assessment Methodology in Human Reliability Analysis

  • Chen, Luyuan;Zhou, Xinyi;Xiao, Fuyuan;Deng, Yong;Mahadevan, Sankaran
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.113-123
    • /
    • 2017
  • In human reliability analysis, dependence assessment is an important issue in risky large complex systems, such as operation of a nuclear power plant. Many existing methods depend on an expert's judgment, which contributes to the subjectivity and restrictions of results. Recently, a computational method, based on the Dempster-Shafer evidence theory and analytic hierarchy process, has been proposed to handle the dependence in human reliability analysis. The model can deal with uncertainty in an analyst's judgment and reduce the subjectivity in the evaluation process. However, the computation is heavy and complicated to some degree. The most important issue is that the existing method is in a positive aspect, which may cause an underestimation of the risk. In this study, a new evidential analytic hierarchy process dependence assessment methodology, based on the improvement of existing methods, has been proposed, which is expected to be easier and more effective.

저온 잠열 축열조내의 열유동 특성에 관한 연구 (A study on Characteristics of Heat Flow of Low Temperature Latent Thermal Storage System)

  • 이원섭;박정원
    • 태양에너지
    • /
    • 제19권4호
    • /
    • pp.33-43
    • /
    • 1999
  • The study on ice thermal storage system is to improve total system performance and increase the economical efficiency in actual all-conditioning facilities. To obtain the high charging and discharging efficiencies in ice thermal storage system, the improvement of thermal stratification is essential, therefore the process flow must be piston flow in the cylindrical type. With the relation of the aspect ratio(H/D) in the storage tank, the stratification is formed better as inlet flow rate is smaller. If the inlet and the outlet port are settled at the upside and downside of the storage tank, higher storage rate could be obtainable. In case that the flow directions inside the thermal storage tank are the upward flow in charging and the downward in discharging, thermal stratification is improved because the thermocline thickness is maitained thin and the degree of stratification increases respectively. In the charging process, in case of inlet flow rate the thermal stratification has a tendency to be improved with the lower flow rate and smaller temperature gradient in case of inlet temperature, the large temperature difference between inflowing water and storage water are influenced from the thermal conduction. The effect of the reference temperature difference is seen differently in comparison with the former study for chilled and hot water. In the discharging process, the thermal stratification is improved by the effect of the thermal stratification of the charging process.

  • PDF

ACTIVATED CARBON CANISTER PERFORMANCE FOR A SPARK IGNITION ENGINE

  • CHOI G. H.;CHOI K. S.;CHUNG Y. J.;KIM I. M.;DIBBLE R. W.;HAN S. B.
    • International Journal of Automotive Technology
    • /
    • 제7권1호
    • /
    • pp.9-15
    • /
    • 2006
  • Prediction of the performance of a carbon canister in vehicle evaporative emission control system has become an important aspect of overall fuel system development and design. A vehicle's evaporative emission control system is continuously working, even when the vehicle is not running, due to generation of vapors from the fuel tank during ambient temperature variations. Evaporative emissions from gasoline powered vehicles continue to be a major concern. The objective of this paper is to clarity the flow characteristics and other such fundamental data for the canister during loading and purging are needed, and this data will prove valuable in the development of the canister. This paper is to evaluate the relationship between carbon canister condition and engine performance during engine operation, and the effects of evaporative emissions on the engine performance were investigated.

STUDY ON THE IN-CYLINDER FLOW CHARACTERISTICS OF AN SI ENGINE USING PIV

  • LEE S.-Y.;JEONG K.-S.;JEON C.-H.;CHANG Y.-J.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.453-460
    • /
    • 2005
  • The tumble or swirl flow is used to promote mixing of air and fuel in the cylinder and to enlarge turbulent intensity in the end of the compression stroke. Since the in-cylinder flow is a kind of transient state with rapid flow variation, which is non-steady state flow, the tumble or swirl flow has not been analyzed sufficiently whether they are applicable to combustion theoretically. In the investigation of intake turbulent characteristics using PIV method, typical flow characteristics were figured out by SCV configurations. An engine installed SCV had higher vorticity and turbulent strength by fluctuation and turbulent kinetic energy than a baseline engine, especially near the cylinder wall and lower part of the cylinder. Above all, the engine with SCV 8 was superior to the others in aspect of vorticity and turbulent strength. For energy dissipation, a baseline engine had much higher energy loss than the engine installed SCV because flow impinged on the cylinder wall. Consequently, as swirl flow was added to existing tumble flow, it was found that fluctuation increased and flow energy was conserved effectively through the experiment.

ENERGY ABSORPTION CHARACTERISTICS IN SQUARE OR CIRCULAR SHAPED ALUMINUM/CFRP COMPOUND TUBES UNDER AXIAL COMPRESSION

  • CHA C. S.;LEE K. S.;CHUNG J. O.;MIN H. K.;PYEON S. B.;YANG I. Y.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.501-506
    • /
    • 2005
  • With the respective collapse characteristics of aluminum and CFRP (Carbon Fiber Reinforced Plastics) tubes in mind, axial collapse tests were performed for aluminum/CFRP compound tubes, which are composed of square or circular shaped aluminum tubes wrapped with CFRP outside. In this study, the collapse modes and the energy absorption characteristics were analyzed for aluminum/CFRP compound tubes which have different fiber orientation angle of CFRP. Fracture modes in the aluminum/CFRP compound tubes were rather stable than those in the CFRP tubes alone, probably due to the ductile nature of the inner aluminum tubes. The absorbed energy per unit volume of the aluminum or the aluminum/CFRP compound tubes was higher than that of CFRP tubes. Meanwhile, the absorbed energy per unit mass, for the light-weight design aspect was higher in the aluminum/CFRP compound tubes than in the aluminum tubes or the CFRP tubes. The energy absorption turned out to be higher in circular tubes than in square tubes. Beside the collapse modes and the energy absorption characteristics were influenced by the orientation angle, and the compound tubes took the most effective energy absorption when the fiber orientation angle of CFRP was 90 degrees.

765kV 1회선 선로의 2차아크 모의결과 분석 (Analysis of Simulation Results for Secondary Arc in 765kV single transmission line)

  • 안상필;김철환;박남옥;주형준;심응보
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.36-38
    • /
    • 2004
  • In many countries, including Korea, in order to transmit the more electric power, the higher transmission line voltage is inevitable. So, a rapid reclosing scheme is important for UHV transmission lines to ensure requirements for high reliability of main lines. But, because of the high voltage and long span of UHV lines, the secondary arc current flows across the fault point even after the interruption of the fault current. i.e. A critical aspect of reclosing operation is the extinction of the secondary arc since it must extinguish before successful reclosure can occur. In Korea transmission lines, it is scheduled to energize 765kV single transmission line(79km) between Sin-Ansung S/S and Sin-Gapyeong S/S at June 2006. Therefore this paper analyzes characteristics of the secondary arc extinction on 765kV single transmission line using EMTP. Simulation results shows that the average value of the secondary arc is $30A_{rms}$ and the auto-extinction time of it is longer at closer point to Sin-Gapyeong S/S.

  • PDF

디스크 브레이크 허브 볼트의 억지 끼워 맞춤에서 발생하는 소성변형의 해석 (An analysis of plastic deformation occurring by interference fit of disk brake hub bolt)

  • 이요셉;곽시영;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.238-241
    • /
    • 2008
  • A brake system in automobile is one of the important parts that directly affect the safety of passengers. Particularly, disk brake module is applied to almost all kinds of automobile brake system due to its remarkable braking power and braking distance. In the disk brake module of an automobile, the bolt for tire wheel is assembled to the disk brake hub by interference fit (bolt pressing process). The process induces small deformation whose range is within tens of ${\mu}m$ and this deformation may cause the runout badness of the whole disk brake module, and even braking problems such as judder or squeal phenomena which makes the loss of braking efficiency. In this study, bolt pressing fit into hub was simulated by $ANSYS^{TM}$, a commercial structure analysis program. Also, the aspect and the cause of hub displacement were analyzed and the solution for decreasing runout of hub was proposed.

  • PDF

레이저 이종용접에서의 입열량 변화에 대한 용접특성 비교 (Comparison of Welding Characteristics on Heat input Changing of Laser Dissimilar Metals Welding)

  • 신호준;유영태;신병헌;안동규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.997-1003
    • /
    • 2005
  • Laser welding of dissimilar metals has been widely used to improve a wear resistance and a corrosion resistance of the industrial parts. The objective of this research works is to investigate the influence of the process parameters, such as the welding for SM45C and STS304 with CW Nd:YAG lasers. The bead-on-plate welding tests are carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the dissimilar welding, the welding qualify of the cut section, stain-stress behavior and the hardness of the welded part are investigated. From the results of the investigation, it has been shown that the optimal welding condition without defects in the vicinity of the welded area and with a good welding quality is 1600W of the laser power, 0.85m/min of welding speed and 4m/min of pressure for shielding gas.

  • PDF