• Title/Summary/Keyword: Aspect Ratio Effect

Search Result 757, Processing Time 0.026 seconds

Pressure distribution on rectangular buildings with changes in aspect ratio and wind direction

  • Lee, Young Tae;Boo, Soo Ii;Lim, Hee Chang;Misutani, Kunio
    • Wind and Structures
    • /
    • v.23 no.5
    • /
    • pp.465-483
    • /
    • 2016
  • This study aims to enhance the understanding of the surface pressure distribution around rectangular bodies, by considering aspects such as the suction pressure at the leading edge on the top and side faces when the body aspect ratio and wind direction are changed. We carried out wind tunnel measurements and numerical simulations of flow around a series of rectangular bodies (a cube and two rectangular bodies) that were placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equations with the typical two-equation model (i.e., the standard $k-{\varepsilon}$ model) were solved, and the results were compared with the wind tunnel measurement data. Regarding the turbulence model, the results of the $k-{\varepsilon}$ model are in overall agreement with the experimental results, including the existing data. However, because of the blockage effects in the computational domain, the pressure recovery region is underpredicted compared to the experimental data. In addition, the $k-{\varepsilon}$ model sometimes will fail to capture the exact flow features. The primary emphasis in this study is on the flow characteristics around rectangular bodies with various aspect ratios and approaching wind directions. The aspect ratio and wind direction influence the type of wake that is generated and ultimately the structural loading and pressure, and in particular, the structural excitation. The results show that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and side faces of the cube. In addition, the transverse width has a substantial effect on the variations in surface pressure around the bodies, while the longitudinal length has less influence compared to the transverse width.

Condensation Heat Transfer and Pressure Drop in Flat Tubes with Different Aspect Ratios (종횡비가 다른 납작관 내 응축열전달 및 압력손실)

  • Kim, Nae-Hyun;Park, Ji-Hoon;Cha, Sang-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1111-1119
    • /
    • 2010
  • In this study, condensation heat transfer coefficients of R-410A were obtained in flattened tubes made from round tubes with an inner diameter of 5.0 mm. The saturation temperature was $45^{\circ}C$; the heat flux, 10 kW/$m^2K$; the mass flux, 100-400 kg/$m^2s$; and the quality, 0.2-0.8. The results showed that the effect of the aspect ratio on the condensation heat transfer coefficient depended on the flow pattern. For annular flow, the heat transfer coefficient increased as the aspect ratio increased. For stratified flow, however, the reverse was true: the pressure drop increased as the aspect ratio increased. Existing correlations adequately predicted the heat transfer coefficients and pressure drops of the flattened tubes.

The Influence of the Aspect Ratio on the Natural Frequency of the Specially Orthotropic Laminated Plates (특별직교이방성 적층판의 고유진동수에 대한 형상비의 영향)

  • Han, Bong Koo;Kim, Duck Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.219-225
    • /
    • 2011
  • Advanced composite structures are too difficult for such design engineers for construction and some simple but accurate enough methods are necessary. The simply supported laminated plates are analyzed by the specially orthotropic laminates theory. This method, however, may be too difficult for some practising engineers. In this paper, the result of analysis for such plate by means of the beam theory with unit width is reported. The plate aspect ratio considered is from 1 : 1 to 1 : 5. Most of the bridge and building slabs on girders have large aspect ratios. For such cases further simplification is possible by neglecting the effect of the longitudinal moment terms($M_x$) on the relevant partial differential equations of equilibrium. In this paper. the influence of the aspect ratio on the natural frequency of the specially orthotropic laminated plates is studied and it is concluded that the method used is sufficiently accurate for engineering purposes. The result of this paper can be used for simply supported laminated plates analysis.

A simplified directly determination of natural frequencies of CNT: Via aspect ratio

  • Banoqitah, Essam Mohammed;Hussain, Muzamal;Khadimallah, Mohamed A.;Ghandourah, Emad;Yahya, Ahmad;Basha, Muhammad;Alshoaibi, Adil
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.207-216
    • /
    • 2022
  • In this paper, a novel model is developed for frequency behavior of single walled carbon nanotubes. The governing equation of motion is constructed method based on the Sander theory using Rayleigh-Ritz's method The frequencies enhances on increasing the power law index using simply supported, clamped and clamped free end conditions. The frequency curve for C-F is less than other conditions. It is due to the physical constraints which are applied on the edge of the CNT. It is observed that the C-F boundary condition have less frequencies from the other two conditions. The frequency phenomena for zigzag are insignificant throughout the aspect ratio. Moreover when index of power law is increased then frequencies increases for all boundary conditions. The natural frequency mechanism for the armchair (10, 10) for various values of power law index with different boundary conditions is investigated. Here frequencies decrease on increases the aspect ratio for all boundary conditions. The frequency curves of SS-SS edge condition is composed between the C-C and C-F conditions. The curves of frequency are less significant from small aspect ratio (L/d = 4.86 ~ 8.47) and decreases fast for greater ratios. It is found that the frequencies via aspect ratios, armchair (10, 10) have higher values from zigzag (10, 0). It is due to the material structure which is made by the carbon nanotubes. The power law index have momentous effect on the vibration of single walled carbon nanotubes. The present frequency result is also compared numerically experimentally with Raman Spectroscopy.

Numerical Study of the Rib Arrangements for Enhancing Heat Transfer in a Two-pass Channel of Large Aspect Ratio (종횡비가 큰 이차유로에서 냉각성능 향상을 위한 요철배열 연구)

  • Han, Sol;Choi, Seok Min;Sohn, Ho-Seong;Cho, Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.161-169
    • /
    • 2017
  • The present study investigated the effect of the rib arrangement and a guide vane for enhancing internal cooling of the blade. Two types of rib arrangements were used in the first and second passage in parallel. Aspect ratio of the channel was 5 and a fixed Reynolds number based on hydraulic diameter was 10,000. The attack angle of rib was $60^{\circ}$, rib pitch-to-height ratio (p/e) was 10, and the rib height-to-hydraulic-diameter ratio ($e/D_h$) was 0.075. The effect of an interaction between Dean vortices and the secondary vortices from the first passage was observed. Overall, the attack angle of rib in the first passage was dominant factor to heat transfer and flow patterns in turning region. Also, the channel with a guide vane showed enhanced heat transfer at the tip surface with reducing flow separation and recirculation.

Effect of rolling parameters on soft-magnetic properties during hot rolling of Fe-based soft magnetic alloy powders (Fe계 연자성 합금 분말의 고온 압연시 자성특성에 미치는 압연인자들의 영향)

  • Kim, H.J.;H.Lee, J.;Lee, S.H.;Park, E.S.;Huh, M.Y.;Bae, J.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.266-269
    • /
    • 2009
  • Iron-based soft magnetic materials are widely used as cores, such as transformer transformers, motors, and generators. Reducing losses generated from soft magnetic materials of these applications results in improving energy conversion efficiency. Recently, the new P/M soft magnetic material realized an energy loss of 68 W/kg with a drive magnetic flux of 1 T, at a frequency of 1 kHz, rivaling general-purpose electromagnetic steel sheet in the low frequency range of 200 Hz to 1 kHz. In this research, the effect of rolling parameters on soft magnetic properties of Fe-based powder cores was investigated. The Fe-based soft magnetic plates were produced by the hot powder rolling process after both pure Fe and Fe-4%Si powders were canned, evacuated, and sealed in Cu can. The soft magnetic properties such as energy loss and coercive power were measured by B-H curve analyzer. The soft magnetic properties of rolled sheets were measured under conditions of a magnetic flux density of 1 T at a frequency of 200 kHz. It was found that rolling reduction ratio is the most effective parameter on reducing both energy loss and coercivity because of increasing aspect ratio with reduction ratio. By increasing aspect ratio from 1 to 9 through hot rolling of pure Fe powder, a significant loss reduction of one-third that of SPS sample was achieved.

  • PDF

Aerodynamic Optimization of 3 Dimensional Wing-In-Ground Airfoils Using Multi-Objective Genetic Algorithm (지면효과를 받는 3 차원 WIG 선의 익형 형상 최적화)

  • Lee, Ju-Hee;You, Keun-Yeal;Park, Kyoung-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3080-3085
    • /
    • 2007
  • Shape optimization of the 3-dimensional WIG airfoil with 3.0-aspect ratio has been performed by using the multi-objective genetic algorithm. The WIG ship effectively floating above the surface by the ram effect and the virtual additional aspect ratio by a ground is one of next-generation and cost-effective transportations. Unlike the airplane flying out of the ground effect, a WIG ship has possibility to capsize because of unsatisfying the static stability. The WIG ship should satisfy aerodynamic properties as well as a static stability. They tend to strong contradict and it is difficult to satisfy aerodynamic properties and static stability simultaneously. It is inevitable that lift force has to scarify to obtain a static stability. Multi-objective optimization technique that the individual objectives are considered separately instead of weighting can overcome the conflict. Due to handling individual objectives, the optimum cannot be unique but a set of nondominated potential solutions: pareto optimum. There are three objectives; lift coefficient, lift-to-drag ratio and static stability. After a few evolutions, the non-dominated pareto individuals can be obtained. Pareto sets are all the set of possible and excellent solution across the design space. At any selections of the pareto set, these are no better solutions in all design space

  • PDF

Stress intensity factor calculation for semi-elliptical cracks on functionally graded material coated cylinders

  • Farahpour, Peyman;Babaghasabha, Vahid;Khadem, Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1087-1097
    • /
    • 2015
  • In this paper, the effect of functionally graded material (FGM) coatings on the fracture behavior of semi-elliptical cracks in cylinders is assessed. The objective is to calculate the stress intensity factor (SIF) of a longitudinal semi-elliptical crack on the wall of an aluminum cylinder with FGM coating. A three-dimensional finite element method (FEM) is used for constructing the mechanical models and analyzing the SIFs of cracks. The effect of many geometrical parameters such as relative depth, crack aspect ratio, FG coating thickness to liner thickness as well as the mechanical properties of the FG coating on the SIF of the cracks is discussed. For a special case, the validity of the FE model is examined. The results indicated that there is a particular crack aspect ratio in which the maximum value of SIFs changes from the deepest point to the surface point of the crack. Moreover, it was found that the SIFs decrease by increasing the thickness ratio of the cylinder. But, the cylinder length has no effect on the crack SIFs.

Bluff body asymmetric flow phenomenon - real effect or solver artefact?

  • Prevezer, Tanya;Holding, Jeremy;Gaylard, Adrian;Palin, Robert
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.359-368
    • /
    • 2002
  • This paper describes a CFD investigation into the flow over the cab of a bluff-fronted lorry. Several different simulations were undertaken, using the commercial codes: CFX, Fluent and PowerFLOW. Using the $k-{\varepsilon}$ turbulence model, the flow over the cab was symmetric, however, using more accurate turbulence models such as the RNG $k-{\varepsilon}$ model or the Reynolds Stress Model, the flow was asymmetric. The paper discusses whether this phenomenon is a real effect or whether it is a solver artefact and the study is supported by experimental evidence. The findings are preliminary, but suggest that it has a physical origin and that it may be aspect ratio-dependent.

Visualization of double-diffusive convection during solidification processes of a binary mixture (이성분혼합물의 응고과정중 이중확산대류의 가시화)

  • Jeong, U-Ho;Jeong, Jae-Dong;Yu, Ho-Seon;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.440-451
    • /
    • 1998
  • An experimental study has been conducted to investigate solidification of NH$_{4}$CI-H$_{2}$0 mixtures inside a vertical rectangular enclosure. Solidification process is visualized by the shadowgraph method. Emphasis is placed on the effect of solidification parameters such as the aspect ratio, cooling wall temperature and initial composition. The aspect ratio shows a dominant effect on the number and developing time of the double diffusive layers which reveals the relative strength of solutal convection to thermal convection. Similar flow pattern is observed when the concentration difference between interdendritic liquid and the pure liquid which drives solutal convection is the same regardless of the different cooling wall temperature and initial concentration.