• Title/Summary/Keyword: Aspect Ratio Effect

Search Result 757, Processing Time 0.03 seconds

Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes

  • Hussain, Muzamal;Naeem, Muhammad N.;Asghar, Sehar;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.8 no.4
    • /
    • pp.307-322
    • /
    • 2020
  • In this article, free vibration of double-walled carbon nanotubes (DWNT) based on nonlocal Kelvin's model have been investigated. For this purpose, a nonlocal Kelvin's model is established to observe the small scale effect. The wave propagation is employed to frame the governing equations as eigenvalue system. The influence of nonlocal parameter subjected to different end supports has been overtly examined. The new set of inner and outer tubes radii investigated in detail against aspect ratio. The influence of boundary conditions via nonlocal parameter is shown graphically. Due to small scale effect fundamental frequency ratio decreases as length to diameter ratio increases. Small scale effect becomes negligible on all end supports for the higher values of aspect ratio. With the smaller inner tube radius double-walled CNT behaves more sensitive towards nonlocal parameter. The results generated furnish the evidence regarding applicability of nonlocal model and also verified by earlier published literature.

The Effects of Mixture Rate and Aspect Ratio of Steel Fiber on Mechanical Properties of Ultra High Performance Concrete (강섬유 혼입율 및 형상비가 초고강도 콘크리트의 역학적 성질에 미치는 영향)

  • Choi, Jung-Gu;Lee, Gun-Cheol;Koh, Kyung-Taek
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.14-20
    • /
    • 2017
  • Ultra high performance concrete is inevitably used in case of skyscraper and super long span bridge. In general, the flexural and the tensile strengths of concrete are lower than the compressive strength, so brittle cracks occur and energy absorption ability is lowered. In order to solve this problem, this study is intended to examine the effect of the steel fiber volume fraction and aspect ratio on the mechanical properties of ultra high performance concrete. In series I, 20-mm straight steel fiber was added with a volume fraction of 0, 1.0, 1.3, 1.5 and 2.0%. In series II, 16-mm steel fiber was added with a volume fraction of 0, 1, and 1.5%, and then mechanical properties were examined according to aspect ratio. In the results of experiment, a difference in compressive strength was insignificant. However, regarding the flexural strength and tensile strength, as the volume fraction and aspect ratio increased, flexural performance and tensile performance improved.

Development of the Delamination Evaluation Parameters (I) -The Delamination Aspect Ratio and the Delamination Shape Factors-

  • Song, Sam-Hong;Oh, Dong-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1932-1940
    • /
    • 2004
  • Although the previous researches evaluated the fatigue behavior of Al/GFRP laminates using the traditional fracture mechanism, their researches were not sufficient to do it : the damage zone of Al/GFRP laminates was occurred at the delamination zone instead of the crack-metallic damages. Thus, previous researches were not applicable to the fatigue behavior of Al/GFRP laminates. The major purpose of this study was to evaluate delamination behavior using the relationship between crack length (a) and delamination width (b) in Al/GFRP laminate. The details of investigation were as follows: 1) Relationship between the crack length (a) and the delamination width (b), 2) Relationship between the delamination aspect ratio (b/a) and the delamination area rate ((A$\_$D/)/subN// (A$\_$D/)$\_$All/), 3) The effect of delamination aspect ratio (b/a) on the delamination shape factor (f$\_$s/) and the delamination growth rate (dA$\_$D// da). As results, it was known that the delamination aspect ratio (b/a) was decreased and the delamination area rate ((A$\_$D/)$\_$N// (A$\_$D/)$\_$All/) was increased as the normalized crack size (a/W) was increased. And, the delamination shape factors (f$\_$s/) of the ellipse-II(f$\_$s3/) was greater than of the ellipse-I(f$\_$s2/) but that of the triangle (f$\_$s1/) was less than of the ellipse-I(f$\_$s2/).

Effect of Duct Aspect Ratios on Pressure Drop in a Rotating Two-Pass Duct (덕트 종횡비가 회전덕트 내 압력강하에 미치는 영향)

  • Kim Kyung-Min;Lee Dong-Hyun;Cho Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.505-513
    • /
    • 2006
  • The pressure drop characteristics in a rotating two-pass duct with rib turbulators are investigated in the present study. Three ducts of different aspect ratios (W/H=0.5, 1.0 and 2.0) are employed with a fixed hydraulic diameter ($D_h$) of 26.7 mm. $90^{\circ}$-rib turbulators with $1.5mm{\times}1.5mm$ cross-section are attached on the leading and trailing surfaces. The pitch-to-rib height ratio (p/e) is 1.0. The distance between the tip of the divider and the outer wall of the duct is 1.0 W. The thickness of divider wall is 6.0 mm o. 0.225 $D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000 and the .elation number (Ro) is varied from 0.0 to 0.2. As duct aspect ratio increases, high friction factor ratios show in overall regions. The reason is that the rib height-to-duct height ratio (e/H) increases, but the divider wall thickness-to-duct width ($t_d/W$) decreases. The rotation of duct produces pressure drop discrepancy between the leading and trailing surfaces. However, the pressure drop discrepancy of the high duct aspect ratio (AR=2.0) is smaller than that of the low duct aspect ratio (AR=0.5) due to the decrement of duct hight (H).

Aerodynamic Effect on the Flow Field under the Wing with Varying Aspect Ratio (가로세로비에 따른 날개 하부 유동장의 공기역학적 영향)

  • Cho, Cheolyoung;Park, Jongho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.94-101
    • /
    • 2016
  • In this paper, aerodynamic effects on the flow field under the wing with varying aspect ratio were investigated by measuring pressures on the lower surface of wing and analysing velocity components using Particle Image Velocimetry at Reynolds numbers of $1.384{\times}10^5$ and $2.306{\times}10^5$. In case of aspect ratio 4.8 which keeps the wing tip at a distance of 80% chord length from the pylon, the vortex from the wing tip influenced the flow field under the wing by reducing static pressures on the lower surface and increasing the velocity in proximity of the wing tip. Throughout the results, it is observed that aerodynamic effects of wing tip on the flow field around pylon under wing become insignificant as the aspect ratio increases.

Reducing Effect of Wind-induced Vibration on Rectangular Model of Super-Highrise Building with Length of Corners Cutting (초고층 건물의 각주형 단면에 대한 공력 불안정 진동 및 풍진 저감 효과에 관한 실험적 연구)

  • Cheong, Yung-Bea
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.301-311
    • /
    • 2001
  • For a rectangular-highrise building with aspect ratio about six, the resonant wind speed of wind-induced vibration or galloping start wing speed can be within the design wind speed. The wind-induced vibration and galloping of highrise building with aspect ratio $H/\sqrt{DB}=6$, side ratio D/B=1 to 2 at intervals of 1/4 D/B were investigated in smooth flow. For the reducing effect of wind-induced vibration of highrise building, rectangular-highrise building with corners cutting about side ratio D/B=2 were investigated. Experimental results show that in the smooth flow non corners-cutting cases have tendency of increasing wind-induced vibration and galloping vibration then corner-cutting section. Therefore, the wind-induced vibrations on rectangular-highrise buildings were reduced effectively by using corner cut method.

  • PDF

Effect of buoyancy and thermocapillarity on the melt motion and mass transfer for different aspect ratio of flow field in magnetic Czochralski crystal growth of silicon (Cusp 자장이 걸려있는 초크랄스키 실리콘 단결정성장에서 유동장의 종횡비에 따라 부력과 열모세관 현상이 용융물질의 유동과 물질전달에 미치는 영향)

  • 김창녕
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.177-184
    • /
    • 2000
  • The effect of the buyancy and thermocapillarity for differnent aspect ratio of flow field on melt motion and mass transfer has been numerically investigated in magnetic Czochralski crystal growth of silicon. During the process of crystal growth, the melt depth of crucible reduces so the aspect ratio of flow field also reduces. Therefore the shape of magnetic field of the flow field changes and the flow pattern also changes significantly. Together with the melt flow which forms the Marangoni convection (or thermocapillary flow) that comes from the inside the flow field, a flow circulation is observed near the corner close both to the crucible wall and the free surface. Due to this circulation, buoyancy effect has been turned out to be local rather than global. As the aspect ratio decreases, the radial component of the magnetic field prevails compared with the axial component in the flow field. Under the influence of this magnetic field, the melt flow and the temperature distribution in a meridional plane tend to depend on the radial position. As the aspect ratio decreases, the temperature gradient near the edge of the crystal decreases yielding smaller thermocapillarity, and the oxygen concentration near the crystal and the oxygen incorporation rate also decrease.

  • PDF

Effects of the aspect ratio and inlet velocity on the thermal stratification in a diffuser type seasonal thermal storage tank (디퓨저 타입 계간 축열조 내부 열성층화에 대한 입구 유속 및 탱크 종횡비 영향 연구)

  • Kim, Seong Keun;Jung, Sung Yong
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.99-105
    • /
    • 2021
  • In this study, the thermal stratification in solar seasonal thermal storage tanks was numerically simulated. The effects of the aspect ratio (AR) and inlet velocity on the thermal stratification in the diffuser type heat storage tank were investigated. The temperature distributions inside the tank were similar with velocity fields. Jet flows from opposite diffusers encountered each other at the tank center region. Thereafter, the downward flows occurred, and this flows strongly affected the thermal stratification. When AR was smaller than 2, these downward flows influenced a further distance and enhanced mixing inside the tank. Thermal stratification was evaluated by thermocline thickness and degree of stratification, and AR of 3 had the highest degree of stratification. The inlet velocity effect was expressed with the ratio (Re/Ri) of Reynolds and Richardson numbers. The second-order approximation was found for the relationship between the thermocline thickness and log Re/Ri.

A Numerical Study on the Convective Mass Transfer in Horizontal Rectangular Enclosures (수평 직사각 밀폐공간에서의 대류물질전달에 관한 수직적 연구)

  • 배대석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.294-302
    • /
    • 1998
  • The charateristics of the convective mass transfer in horizontal rectangular enclosure with horizontal concentration gradients are analyzed. The effect of Grashof number(Gr) and aspect ratio(L/H) is investigated numerically using the control-volume method. Numerical results are obtained for Grashof numbers between $10^4$ and $10^6$ aspect ratios from 1 to 100 and results are compared with existing andlytical results. It is found that there exists a well defined aspect ratio for which the mean Sherwood number is maximum and the core flow changes from parallel to non-parallel at $Gr^2{Sc^2}(A^{-3}}{\geq}{10^5}$ and in the Ralongrightarrow0 regime the numerical results agreed very well with correlation derived from analytical results.

  • PDF

A Study on Improvement of Etching Characteristics by Spray Characteristics Analysis with Nozzle Geometries in Wet Etching Process (습식 에칭공정에서 노즐 형상에 따른 분무특성 분석을 통한 에칭특성의 향상에 관한 연구)

  • Jung, Ji-Won;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.842-849
    • /
    • 2004
  • The objective of this work is to study the improvement of etching characteristics in wet etching process. The etching characteristics such as etching factor were investigated under different etching conditions and compared with the spray characteristics. The spray characteristics of nozzle with different geometries such as swirler angle and swirl chamber aspect ratio were analyzed by using PDA system to predict the effect of the spray characteristics on the etching factor. The swirler angles were 49,5$^{\circ}$, 63$^{\circ}$ and 76.5$^{\circ}$. The swirl chamber aspect ratios were 1.2, 1.6 and 2.0. It was found that the etching factor was correlated with the spray characteristics and also the smaller swiller angle, the larger etching factor became.