• Title/Summary/Keyword: Aspect Ratio Distribution

Search Result 314, Processing Time 0.024 seconds

The Development of Partial Model for Thermo-Mechanical Stress Analyses of Part with Coated Layer under Contact Load (접촉하중을 받는 코팅층이 있는 부재의 응력해석을 위한 부분 모델 방법의 개발)

  • Kwon, Young-Doo;Kim, Seock-Sam;Goo, Nam-Seo;Park, Jung-Gyu
    • Tribology and Lubricants
    • /
    • v.18 no.3
    • /
    • pp.194-203
    • /
    • 2002
  • This paper is the first step fur thermo-mechanical stress analyses of part with coated layer under contact load. A lot of coated material is applied in many structures to endure severe situation, like thermal stresses, high temperature gradients, irradiation, impacts by microscopic meteorites, and so on. In this part we are going to apply the FEM to analyze space parts with a coated layer subjected to a contact load thermo-mechanically. Coating layer is very thin in comparision with the structure, therefore it should take more times and behaviors to analyze whole model. In these reason we develop the FEM method of analyzing part with coated layer under contact load using partial model. Steady state temperature distribution of the part is obtained first, and then we apply quasi-static external load on the part. To obtain the final stage of solution, we compute the total solution, and by subtracting the thermal strain from the total ones we get the mechanical strains to compute stresses of the parts. In using the FEM, one has to discretize the model into many sub-domain, finite elements. The method is consisited of two steps. First step is to analyze the whole model with rather coarse meshes. Second step we cut a small region near the loading point, and analyze with very fine meshes. This method is allowable by the Saint-Venant's principle. And then, we finally shall check the therma1 load on the stresses of the space part with coating layer with or without substrate cracks. Then, we predict the actual behaviors of the part used in space.

Swimming Motion of Flagellated Bacteria Under Low Shear Flow Conditions (느린 전단흐름에서 편모운동에 의한 대장균의 거동 특성)

  • Ahn, Yong-Tae;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.191-195
    • /
    • 2011
  • The measurement and prediction of bacterial transport of bacteria in aquatic systems is of fundamental importance to a variety of fields such as groundwater bioremediation ascending urinary tract infection. The motility of pathogenic bacteria is, however, often missing when considering pathogen translocation prediction. Previously, it was reported that flagellated E. coli can translate upstream under low shear flow conditions. The upstream swimming of flagellated microorganisms depends on hydrodynamic interaction between cell body and surrounding fluid flow. In this study, we used a breathable microfluidic device to image swimming E. coli at a glass surface under low shear flow condition. The tendency of upstream swimming motion was expressed in terms of 'A' value in parabolic equation ($y=Ax^2+Bx+C$). It was observed that high shear flow rate increased the 'A' value as the shear force acting on bacterium increased. Shorter bacterium turned more tightly into the flow as they swim faster and experience less drag force. The result obtained in this study might be relevant in studying the fate and transport of bacterium under low shear flow environment such as irrigation pipe, water distribution system, and urethral catheter.

Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and un-symmetric distributions of nanotubes under multi physical fields

  • Mohammadimehr, Mehdi;Zarei, Hassan BabaAkbar;Parakandeh, Ali;Arani, Ali Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.361-379
    • /
    • 2017
  • In this article, the vibration behavior of double-bonded sandwich microplates with homogeneous core and nanocomposite facesheets reinforced by carbon nanotube and boron nitride nanotube under multi physical fields such as 2D magnetic and electric fields is investigated. Symmetric and un-symmetric distributions of nanotubes are considered for facesheets of sandwich microplates such as uniform distribution and various functionally graded distributions. The double-bonded sandwich microplates rest on visco-Pasternak foundation. Material properties of sandwich microplates are obtained by the extended rule of mixture. The sinusoidal shear deformation theory (SSDT) is employed to describe displacement fields of sandwich microplates. Also, the dimensionless natural frequency is obtained by classical plate theory (CPT) and compared with the obtained results by SSDT. It can be seen that the obtained dimensionless natural frequencies by CPT are higher than SSDT. In order to study the material length scale parameters, modified strain gradient theory at micro scale is utilized and then, the equations of motion are derived using Hamilton's principle. The effects of different parameters such as foundation parameters including Winkler, shear layer and damping coefficients, various distributions and volume fraction of nanotubes, core to facesheet thickness ratio, aspect and side ratios on the dimensionless natural frequencies are discussed in details. The results of present work can be used to optimum design and control of similar systems such as micro-electro-mechanical and nano-electro-mechanical devices.

A Study on the Ultimate Strength According to the Boundary Condition of a Ship Plate under Thrust (압축하중을 받는 선체판의 경계조건에 따른 최종강도에 관한 연구)

  • 고재용;박주신;이돈출
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.89-93
    • /
    • 2002
  • One of the primary factors like plate structure in ship is redundancy structure that is comparable with ocean structure and frame structure. The more component material becomes buckling collapsed locally the less structure stiffness becomes accordingly. As a result, by increasing the load distribution of my other subsidiary structure continually component member collapses, therefore the structure could be in danger of collapse. So, in order to interpret this phenomenon precisely, the study on boundary condition of the ship's plate and post-buckling analysis must be considered In this study, the rectangular plate is compressed by the in-plane load Buckling & Ultimate strength characteristics are applied o be the elasto-plasticity large deformation by ansys code with F.E.M method On this basis, elasto-plasticity of the plain plate are investigated. This study proved elasto-plasticity behaviour of the ship's plate in accordance with boundary condition based on the series analysis in case of the compressive load operation

  • PDF

Natural Convection Heat Transfer Past an Outer Rectangular Corner (외부 직각모서리 부근에서의 자연대류 열전달)

  • 신순철;장근식;김승수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.598-605
    • /
    • 1985
  • Laminar natural convection heat transfer past an outer rectangular corner was experimentally investigated by using Mach-Zehnder interferometer. The present geometry represents the case when the plume from a vertical flat plate and that from a horizontal one merge into a single plume. the temperature distribution and the local heat flux were measured in the range of Grashof number 8 * 10$^{4}$$r_{LH}$ <1.25 * 10$^{6}$ . The effect of the geometric aspect ratio was also considered. Correlation for the average Nusselt number vs. Grashof number was obtained by using a newly determined characteristic length. To determine the interaction of the plumes, the present results were compared with the similarity solutions available from the isolated vertical and isolated horizontal flat plates.

Evaluation of the physical properties of organic fillers made from agricultural byproducts (농업부산물로 제조된 유기충전제의 물리적 특성 평가)

  • Lee, Ji-Young;Lim, Gi-Baek;Kim, Young-Hoon;Lee, Se-Ran;Kim, Man-Young;Kim, Chul-Hwan;Kim, Sun-Young;Kim, Jun-Sik
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.4
    • /
    • pp.34-41
    • /
    • 2013
  • In this study, we investigated the physical properties of powders made from agricultural byproducts, including rice straw, peanut husks, and garlic stems, to manufacture a new organic filler used for making paperboard. These materials were collected individually, and then we measured their chemical compositions. The byproducts were ground with a laboratory grinder and fractionated with 60-, 100-, and 200-mesh sieves to make many grades of organic fillers. After the grinding and fractionation, the yield, mean particle size, and particle size distribution of each grade were measured. Particle shapes were also investigated using a scanning electron microscope. The organic filler made from rice straw had the highest yield of the largest particle size group and higher contents of cellulose and hemicellulose than those made from peanut husks and garlic stems. The rice straw also showed more regular particle shapes and a lower aspect ratio than the other agricultural byproducts.

Investigation of the Effects of UAV Nozzle Configurations on Aircraft Lock-on Range (무인항공기의 노즐 형상 변화가 Lock-on Range에 미치는 영향에 관한 연구)

  • Kim, Min-Jun;Kang, Dong-Woo;Myong, Rho-Shin;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.204-212
    • /
    • 2015
  • The infrared lock-on range of target aircraft plays a critical role in determining the aircraft survivability. In this investigation, the effects of various UAV engine nozzle configurations on the aircraft lock-on range were theoretically analyzed. A virtual subsonic aircraft was proposed first, based on the mission requirement and the engine performance analysis, and convergent-type nozzles were then designed. After determining thermal flow field and nozzle surface temperature distribution with the CFD code, an additional analysis was conducted to predict the IR signature. Also, atmospheric transmissivity for various latitude and seasons was calculated, using the LOWTRAN code. Finally, the lock-on and lethal envelopes were calculated for different nozzle configurations, assuming the sensor threshold of the given IR guided missile. It was shown that the maximum 55.3% reduction in lock-on range is possible for deformed nozzles with the high aspect ratio.

Correlation Analysis between Forest Community and Environment Factor of Nari Basin in Ulleung Island (울릉도 나리분지의 산림군락과 환경요인과의 상관관계)

  • Chung, Jae-Min;Yoon, Jun-Hyuck;Shin, Jae-Kwon;Moon, Hyun-Shik
    • Journal of agriculture & life science
    • /
    • v.45 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • This study was carried out to provide the basic information for effective preservation and management of forest community of Nari basin in Ulleung Island. Forest community in Nari basin was classified into Fagus engleriana community, Sorbus amurensis community, Pinus densiflora community, Celtis jessoensis community and Alnus maximowiczii community. As the result of DCCA ordination analysis, sea level among environmental factors had high correlation with community distribution. Fagus engleriana community and Sorbus amurensis community correlated highly with aspect, Na content, and C/N ratio. There was a high correlation between Celtis jessoensis community and the content of Ca and K. Alnus maximowiczii community was distributed in site where CEC content is high. Pinus densiflora community was distributed in site where the content of Ca and CEC is high.

Thermo-mechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory

  • Ebrahimi, Farzad;Daman, Mohsen;Mahesh, Vinyas
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.249-263
    • /
    • 2019
  • In the current paper, an exact solution method is carried out for analyzing the thermo-mechanical vibration of curved FG nano-beams subjected to uniform thermal environmental conditions, by considering porosity distribution via nonlocal strain gradient beam theory for the first time. Nonlocal strain gradient elasticity theory is adopted to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field is considered. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Material properties of curved porous FG nanobeam are assumed to be temperature-dependent and are supposed to vary through the thickness direction of beam which modeled via modified power-law rule. Since variation of pores along the thickness direction influences the mechanical and physical properties, porosity play a key role in the mechanical response of curved FG nano-structures. The governing equations and related boundary condition of curved porous FG nanobeam under temperature field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved nanobeam supposed to thermal loading. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, porosity volume fractions, thermal effect, gradient index, opening angle and aspect ratio on the natural frequency of curved FG porous nanobeam are successfully discussed. It is concluded that these parameters play key roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

Morphological and Textural Characteristics of the Beach-dune System in South Korea, with the Possibility of a Dune Type Scheme Based on Grain-size Trend (국내 해안의 해빈-해안사구 지형 및 퇴적물 특성과 입도기반 사구유형 분석)

  • Rhew, Hosahng;Kang, Jihyun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.3
    • /
    • pp.53-73
    • /
    • 2020
  • Morphology and grain size distribution of coastal dunes should be well documented because they are critical to dune's buffering capacity and resilience against storm surges. The nationwide coastal dune survey produced the dataset, including beach-dune topographic profiles and grain size parameters for frontal beaches, foredunes, and inland dunes. This research investigated the dataset to describe geomorphic and textural properties of coastal dunes: foredune slopes, dune heights above approximately highest high water, mean size, and sorting, together with associated variables of coastal setting that influence coastal dunes. It also explores the possibility of a dune type scheme based on gran size trends. The results are as follows. First, the coast in which dunes are developed is the primary control on foredune morphology and sediment texture. Coastal dunes on the east coast were developed more alongshore rather than inland, with gentler slopes on the higher ground and out of coarser sand. The shore aspect contributes to this pattern because the east coast cannot benefit from prevailing northwesterly. Second, grain size trends from beaches through foredunes to inland dunes were little identified. Third, 12 dune types were identified from 69 dunes, showing the indicative capability for the status of beaches and dunes. We confirmed that the dataset could increase our understanding of the overall characteristics of coastal dune morphology and texture, though there is something to be improved, for example, establishing the refined and comprehensive field survey protocol.