• 제목/요약/키워드: Aspect Ratio

검색결과 2,838건 처리시간 0.032초

Aspect ratios of code-designed steel plate shear walls for improved seismic performance

  • Verma, Abhishek;Sahoo, Dipti R.
    • Steel and Composite Structures
    • /
    • 제42권1호
    • /
    • pp.107-121
    • /
    • 2022
  • Past studies have shown that the aspect ratio (width-to-height) of a steel plate shear wall (SPSW) can significantly affect its seismic response. SPSWs with lower aspect ratio (narrow SPSW) may experience low lateral stiffness and flexure dominated drift response. As the height of the frame increases, the narrow SPSWs prove to be uneconomical and demonstrate inferior seismic response than their wider counterparts. Moreover, the thicker web plates required for narrow SPSWs exerts high inward pull on the VBEs. The present study suggests the limiting values of the aspect ratio for an SPSW system by evaluating the seismic collapse performance of 3-, 6- and 9-story SPSW systems using FEMA P695 methodology. For this purpose, nonlinear models are developed. These models are validated with the past quasi-static experimental results. Non-linear static analyses and Incremental dynamic analyses are then carried. The results are then utilized to conservatively suggest the limiting values of aspect ratios for SPSW system. In addition to the conventional-SPSW (Conv-SPSW), the collapse performance of staggered-SPSW (S-SPSW) is also explored. Its performance is compared with the Conv-SPSW and the use of S-SPSW is suggested in the cases where SPSW with lower than recommended aspect ratio is desired.

지하 열저장 공동의 종횡비와 저장용량에 따른 열성층화 및 열손실 (Thermal Stratification and Heat Loss in Underground Thermal Storage Caverns with Different Aspect Ratios and Storage Volumes)

  • 박도현;류동우;최병희;선우춘;한공창
    • 터널과지하공간
    • /
    • 제23권4호
    • /
    • pp.308-318
    • /
    • 2013
  • 열저장소 내 열성층화는 에너지저장 시스템의 효율을 향상시키고 수요 발생시 더 많은 유효에너지를 공급하기 위해 필수적인 기술이다. 일반적으로 저장소의 종횡비(폭에 대한 높이의 비)와 크기에 따라 열성층도가 달라지는 것으로 알려져 있다. 본 논문은 열수 저장을 위한 암반공동의 종횡비와 저장용량이 저장공동 내 열성층화와 외부로의 열손실에 미치는 영향을 조사하는 데 연구 목적이 있다. 이를 위해 전산유체역학 코드인 FLUENT를 이용하여 암반공동의 종횡비와 저장용량에 따른 열전달 시뮬레이션을 수행하였다. 성층도 정량화 지수를 이용하여 시간경과에 따른 열성층화의 변화를 분석하였으며, 저장공동 외부로의 열손실을 평가하였다. 분석 결과, 종횡비가 증가함에 따라 공동 내 열성층화가 향상되는 경향을 보였으나, 종횡비 3-4 이상부터는 이러한 영향이 크지 않은 것으로 분석되었다. 저장용량이 작은 암반공동에 비해 용량이 큰 암반공동에서 상대적으로 긴 시간 동안 열성층화가 높게 유지되는 것으로 분석되었으나, 종횡비 증가에 따라 저장용량이 다른 공동들간의 성층화 차이가 줄어드는 경향을 나타냈다. 암반공동의 종횡비가 커질수록 공동의 표면적이 늘어나 종횡비의 증가에 따라 주변 암반으로의 열손실이 증가하는 경향을 보였으며, 단위 저장용량을 줄여 소규모 다중공동을 적용하는 경우, 총 저장용량이 동일한 단일공동에 비해 전체 열손실량이 증가하는 것으로 분석되었다.

사각 단면 관 내부의 발달하는 층류 유동 유사성에 종횡비가 미치는 영향 (Effect of Aspect Ratio on the Similarity of Developing Laminar Flows in Rectangular Ducts)

  • 이공희;백제현
    • 대한기계학회논문집B
    • /
    • 제28권4호
    • /
    • pp.441-448
    • /
    • 2004
  • A numerical study was conducted to show the effect of aspect ratio on the analogy of the developing laminar flows between in orthogonally rotating straight duct and in a stationary curved duct of rectangular cross-section. In order. to clarify the similarity of two nows, dimensionless parameters (equation omitted) and Rossby Ro= $w_{m}$$\Omega$ $d_{h}$, in a rotating straight duct were used as a set corresponding to Dean number, (equation omitted), and curvature ratio, λ=R/ $d_{h}$, in a stationary curved duct. Four. different aspect ratios A=0.25, 0.5, 2 and 4 were considered. Under the condition that the magnitudes of Ro and λ were large enough to satisfy the 'asymptotic invariance property' and the aspect ratio was larger than 1, there were strong quantitative similarities between the two flows such as flow patterns, friction factors, and maximum axial velocity magnitudes fur the same values of $K_{LR}$ and $K_{LC}$ . On the other hand, as the aspect ratio decreased below 1 (A=0.25 and 0.5), the difference of the secondary flow intensity between these two flows was enhanced and therefore the analogy of two flows was not so evident as that of the larger aspect ratio (A=2 and 4). 4).nd 4).

Mechanical Properties of Steam Cured High-Strength Steel Fiber-Reinforced Concrete with High-Volume Blast Furnace Slag

  • Yang, Jun-Mo;Yoo, Doo-Yeol;Kim, You-Chan;Yoon, Young-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.391-401
    • /
    • 2017
  • In this study, the effects of water-to-binder (W/B) ratio and replacement ratio of blast furnace slag (BFS) on the compressive strength of concrete were first investigated to determine an optimized mixture. Then, using the optimized high-strength concrete (HSC) mixture, hooked steel fibers with various aspect ratios and volume fractions were used as additives and the resulting mechanical properties under compression and flexure were evaluated. Test results indicated that replacement ratios of BFS from 50 to 60% were optimal in maximizing the compressive strength of steam-cured HSCs with various W/B ratios. The use of hooked steel fibers with the aspect ratio of 80 led to better mechanical performance under both compression and flexure than those with the aspect ratio of 65. By increasing the fiber aspect ratio from 65 to 80, the hooked steel fiber volume content could be reduced by 0.25% without any significant deterioration of energy absorption capacity. Lastly, complete material models of steel-fiber-reinforced HSCs were proposed for structural design from Lee's model and the RILEM TC 162-TDF recommendations.

액 수위와 유량이 세장비가 큰 냉동용 수직 리시버의 과냉에 미치는 영향 (Effect of Liquid Level and Mass Flow Rate on Subcooling of Vertical Refrigeration Receiver Having a Large Aspect Ratio)

  • 김내현
    • 설비공학논문집
    • /
    • 제29권7호
    • /
    • pp.385-389
    • /
    • 2017
  • Generally, refrigerant temperature out of the receiver is assumed to be saturated. This may be true for horizontal or vertical receivers having small aspect ratio. However, this assumption needs verification for vertical receiver having large aspect ratio. No study has reported information on this issue. The objective of this study was to determine the effect of liquid level and mass flow rate on liquid subcooling of a long vertical receiver using R-410A. During the test, inlet subcooling was maintained at $5^{\circ}C$ while saturation temperature was maintained at $10^{\circ}C$. Results showed that subcooling was maintained for the long vertical receiver. Subcooling preservation ratio (ratio of exit to inlet subcooling) was increased as mass flow rate or liquid level was increased. As a whole, 50 to 70% subcooling preservation was possible for the present receiver. Further investigations are needed to enhance information on this issue using receivers having different aspect ratios.

불연속 금속복합체에서의 탄성거동에 관한 미세구조역학적 해석 (A Micromechanical Analysis on the Elastic Behavior in Discontinuous Metal Matrix Composites)

    • 한국생산제조학회지
    • /
    • 제6권3호
    • /
    • pp.58-64
    • /
    • 1997
  • A micromechanics model to describe the elastic behavior of fiber or whisker reinforced metal matrix composites was developed and the stress concentrations between reinforcements were investigated using the modified shear lag model with the comparison of finite element analysis (FEA). The rationale is based on the replacement of the matrix between fiber ends with the fictitious fiber to maintain the compatibility of displacement and traction. It was found that the new model gives a good agreement with FEA results in the small fiber aspect ratio regime as well as that in the large fiber aspect ratio regime. By the calculation of the present model, stress concentration factor in the matrix and the composite elastic modulus were predicted accurately. Some important factors affecting stress concentrations, such as fiber volume fraction, fiber aspect ratio, end gap size, and modulus ratio, were also discussed.

  • PDF

Strength and behaviour of bamboo reinforced concrete wall panels under two way in-plane action

  • Ganesan, N.;Indira, P.V.;Himasree, P.R.
    • Advances in concrete construction
    • /
    • 제6권1호
    • /
    • pp.1-13
    • /
    • 2018
  • An experimental investigation has been carried out on the use of an environmentally sustainable material, bamboo, in the construction of precast concrete structural wall panels. The strength and behaviour of three prototype bamboo reinforced concrete wall panel specimens under two-way in-plane action was studied. The specimens with varying aspect ratio and thinness ratio were tested to fail under a uniformly distributed in-plane load applied at an eccentricity of t/6. The aspect ratio of the specimens considered includes 1.667, 1.818 and 2 and the thinness ratio includes 12.5, 13.75 and 15. The influence of aspect ratio and thinness ratio of bamboo reinforced concrete wall panels, on its strength and behaviour was discussed. Varnished and sand blasted bamboo splints of 20 mm width and thickness varying from 8 to 15 mm were used as reinforcement in concrete. Based on the study, an empirical equation was developed considering the geometrical parameters of bamboo reinforced concrete wall panels for predicting its ultimate strength under two way in-plane action.

튜브 지지판 재배치에 따른 유체유발진동 특성 해석 (FIV Characteristics of U-Tubes Due to Relocation of the Tube Supprot Plates)

  • 김형진;유기완;박치용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.312-317
    • /
    • 2005
  • Fluid-elastic instability and turbulence excitation for an under developing steam generator are investigated numerically. The stability ratio and the amplitude of turbulence excitation are obtained by using the PIAT (Program for Integrity Assessment of Steam Generator Tube) code from the information on the thermal-hydraulic data of the steam generator. The aspect ratio, the ratio between the height of U-tube from the upper most tube support plate (h) and the width of two vertical portion of U-tube (w), is defined for geometric parameter study. Several aspect ratios with relocation of tube support plates are adopted to study the effects on the mode shapes and characteristics of flow-induced vibration. When the aspect ratio exceeds value of 1, most of the mode shapes at low frequency are generated at the top of U-tube. It makes very high value of the stability ratio and the amplitude of turbulent excitation as well. We can consider that the local mode shape at the upper side of U-tube will develop the wear phenomena between the tube and the anti-vibration bars such as vertical, horizontal, and diagonal strips. It turns out that the aspect ratio reveals very important parameter for the design stage of the steam generator. The appropriate value of the aspect ratio should be specified and applied.

  • PDF

튜브 지지판 재배치에 따른 유체유발진동 특성 해석 (FIV Analysis of SG Tubes for Various TSP Locations)

  • 김형진;박치용;박명호;유기완
    • 한국소음진동공학회논문집
    • /
    • 제15권9호
    • /
    • pp.1009-1015
    • /
    • 2005
  • Fluid-elastic instability and turbulence excitation for an under developing steam generator are investigated numerically. The stability ratio and the amplitude of turbulence excitation are obtained by using the $PIAT^{(R)}$ (program for integrity assessment of steam generator tube) code from the information on the thermal-hydraulic data of the steam generator. The aspect ratio, the ratio between the height of U-tube from the upper most tube support Plate (h) and the width of two vertical portion of U-tube (w), is defined for geometric parameter study. Several aspect ratios with relocation of tube support plates are adopted to study the effects on the mode shapes and characteristics of flow-induced vibration. When the aspect ratio exceeds value of 1, most of the mode shapes at low frequency are generated at the top of U-tube. It makes very high value of the stability ratio and the amplitude of turbulent excitation as well. We can consider that the local mode shape at the upper side of U-tube will develop the wear phenomena between the tube and the anti-nitration bars such as vortical, horizontal, and diagonal strips. It turns out that the aspect ratio reveals very important parameter for the design stage of the steam generator. The appropriate value of the aspect ratio should be specified and applied.

전자교반식 수평연속주조법에 의한 반응고 Al 합금의 제조에 관한 연구 (A Study on the Fabrication of Semi-solid Al Alloys by EMS Horizontal Continuous Casting Process)

  • 박기범;송영배;김영환;김경헌;김인배
    • 한국재료학회지
    • /
    • 제10권2호
    • /
    • pp.117-123
    • /
    • 2000
  • 본 연구에서는 반응고 Al합금을 얻기 위해서 3상 2극의 전자교반장치를 이용하였으며, 주입온도와 주입전압을 변화시켜 Al합금의 초정입자크기, aspect ratio, 표준편차, 경도 및 공정 Si 입자의 크기 및 형상 변화를 조사하였다. 같은 주입온도에서는 주입전압이 증가함에 따라 aspect ratio, 표준편차 및 초정입자의 크기는 감소되었다. 전자교반식 수평연속주조방법에 의한 Al 합금의 최적제조 조건은 주입전압 220V, 주입온도 68$0^{\circ}C$이었으며, 이 조건에서 초정입자의 크기는 54$\mu\textrm{m}$이었고, aspect ratio는 1.56이었으며 그 표준편차는 0.4이었다. 그리고 공정 Si의 크기는 0.5$\mu\textrm{m}$이었으며 제조된 Al합금의 경도는 72.1 Hv를 나타내었다. 본 연구를 위해 제작된 3상 2극 전자교반장치에 의해서 매우 낮은 aspect ratio 및 표준편자를 갖는 반응고 A356 Al합금을 제조할 수 있었다.

  • PDF