• Title/Summary/Keyword: AspA T

Search Result 84, Processing Time 0.026 seconds

Suppression of Autophagy and Activation of Glycogen Synthase Kinase 3beta Facilitate the Aggregate Formation of Tau

  • Kim, Song-In;Lee, Won-Ki;Kang, Sang-Soo;Lee, Sue-Young;Jeong, Myeong-Ja;Lee, Hee-Jae;Kim, Sung-Soo;Johnson, Gall V.W.;Chun, Wan-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.2
    • /
    • pp.107-114
    • /
    • 2011
  • Neurofibrillary tangle (NFT) is a characteristic hallmark of Alzheimer's disease. GSK3β has been reported to play a major role in the NFT formation of tau. Dysfunction of autophagy might facilitate the aggregate formation of tau. The present study examined the role of GSK3${\beta}$-mediated phosphorylation of tau species on their autophagic degradation. We transfected wild type tau (T4), caspase-3-cleaved tau at Asp421 (T4C3), or pseudophosphorylated tau at Ser396/Ser404 (T4-2EC) in the presence of active or enzyme-inactive GSK3${\beta}$. Trehalose and 3-methyladenine (3-MA) were used to enhance or inhibit autophagic activity, respectively. All tau species showed increased accumulation with 3-MA treatment whereas reduced with trehalose, indicating that tau undergoes autophagic degradation. However, T4C3 and T4-2EC showed abundant formation of oligomers than T4. Active GSK3${\beta}$ in the presence of 3-MA resulted in significantly increased formation of insoluble tau aggregates. These results indicate that GSK3${\beta}$-mediated phosphorylation and compromised autophagic activity significantly contribute to tau aggregation.

Bacterial Hormone-Sensitive Lipases (bHSLs): Emerging Enzymes for Biotechnological Applications

  • Kim, T. Doohun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1907-1915
    • /
    • 2017
  • Lipases are important enzymes with biotechnological applications in dairy, detergent, food, fine chemicals, and pharmaceutical industries. Specifically, hormone-sensitive lipase (HSL) is an intracellular lipase that can be stimulated by several hormones, such as catecholamine, glucagon, and adrenocorticotropic hormone. Bacterial hormone-sensitive lipases (bHSLs), which are homologous to the C-terminal domain of HSL, have ${\alpha}/{\beta}-hydrolase$ fold with a catalytic triad composed of His, Asp, and Ser. These bHSLs could be used for a wide variety of industrial applications because of their high activity, broad substrate specificity, and remarkable stability. In this review, the relationships among HSLs, the microbiological origins, the crystal structures, and the biotechnological properties of bHSLs are summarized.

Ablation of Arg-tRNA-protein transferases results in defective neural tube development

  • Kim, Eunkyoung;Kim, Seonmu;Lee, Jung Hoon;Kwon, Yong Tae;Lee, Min Jae
    • BMB Reports
    • /
    • v.49 no.8
    • /
    • pp.443-448
    • /
    • 2016
  • The arginylation branch of the N-end rule pathway is a ubiquitin-mediated proteolytic system in which post-translational conjugation of Arg by ATE1-encoded Arg-tRNA-protein transferase to N-terminal Asp, Glu, or oxidized Cys residues generates essential degradation signals. Here, we characterized the ATE1−/− mice and identified the essential role of N-terminal arginylation in neural tube development. ATE1-null mice showed severe intracerebral hemorrhages and cystic space near the neural tubes. Expression of ATE1 was prominent in the developing brain and spinal cord, and this pattern overlapped with the migration path of neural stem cells. The ATE1−/− brain showed defective G-protein signaling. Finally, we observed reduced mitosis in ATE1−/− neuroepithelium and a significantly higher nitric oxide concentration in the ATE1−/− brain. Our results strongly suggest that the crucial role of ATE1 in neural tube development is directly related to proper turn-over of the RGS4 protein, which participate in the oxygen-sensing mechanism in the cells.

Implementation and Application of a Web-based Courseware for Learning Elementary School Sociology ′Cultural property and Museum′ (초등학교 사회과 ′문화재와 박물관′ 학습을 위한 웹기반 코스웨어의 구현 및 적용)

  • 정희열
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.799-806
    • /
    • 2001
  • 정보화 사회에서는 자기 학습력 신장이 강조되고 있다. 초등사회과 교육에서 자기 학습력을 신장시키기 위해서는 다양한 학습자료의 제공을 통해 개개인의 특성에 맞게 탐구할 수 있는 탐구능력의 육성이 중요하다. 본 논문은 웹 기반 코스웨어를 개발 제작하고 이를 수업에 활용함으로써 개별학습이나 탐구학습에서 바람직한 효과를 거두는데 그 목적이 있다. 본 시스템은 단순히 텍스트와 정지된 그림만을 보여주는 기존의 웹을 활용한 학습과는 달리 Flash를 이용하여 학습자와 상호작용하여 많이 일어나도록 게임학습 위주로 구현하였으며, ASP를 이용하여 자료실, 게시판을 만들어 학습자 상호간에 적극적인 인터페이스가 이루어지도록 하였다. 연구대상은 초등학교 4학년 학생이며, 웹 기반 코스에서 활용 집단과 전통적인 방식의 학습 집단으로 구분하여 연구하였다. T검정과 분산분석을 통해 성적의 변화패턴에 차이가 있다는 것을 알 수 있었다. 이는 '문화재와 박물관' 단원을 학습하는데 있어 웹 기반 코스웨어를 활용한 학습자의 흥미와 호기심을 유발시켜 학습의욕과 교수 학습 방법을 개선하는데 기여하리라 기대되며, 전통적인 방식의 학습보다 효과적이라는 결론이다.

  • PDF

Molecular Docking Study of Anti-diabetic Xanthones from Garcinia Xanthochymus

  • Babu, Sathya
    • Journal of Integrative Natural Science
    • /
    • v.10 no.3
    • /
    • pp.137-140
    • /
    • 2017
  • Diabetes mellitus has become a major growing public health problem worldwide. More than 90% of all diabetes cases are classified as type 2 diabetes (T2D), which is also known as non-insulin dependent diabetes. Protein tyrosine phosphatase 1B (PTP1B) plays an important role in the negative regulation of insulin signal transduction pathway and has emerged as novel therapeutic strategy for the treatment of type 2 diabetes. PTP1B inhibitors enhance the sensibility of insulin receptor (IR) and have favorable curing effect for insulin resistance-related diseases. Recently twelve anti-diabetic xanthones were isolated from the bark of Garcinia xanthochymus. Hence, in the present study, molecular docking was carried out for these twelve xanthones. The objective of this work is to study the interaction of the newly isolated xanthones with PTP1B. The docking results showed that xanthones have good interactions and has better docking score with PTP1B and suggest LYS120 and ASP181 are the important residues involved in interaction between PTP1B enzyme and the xanthones.

A Frameshift Mutation causes Dentinogenesis Imperfecta Type II (상아질 형성부전증 제 II 형의 원인이 되는 Frameshift 돌연변이)

  • Hong, Jiwon;Shin, Teo Jeon;Hyun, Hong-Keun;Kim, Young-Jae;Lee, Sang-Hoon;Kim, Jung-Wook
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.2
    • /
    • pp.164-169
    • /
    • 2017
  • Dentinogenesis imperfecta type II (DGI-II) is an inherited disorder affecting the dentin matrix and is related to mutations in the dentin sialophosphoprotein (DSPP) gene. The protein encoded by the DSPP gene undergoes extensive posttranslational modifications. Dentin phosphoprotein (DPP), one of the DSPP expressed products, has unique composition with highly repetitive Asp-Ser-Ser amino acid residues and is related to the maturation of dentin mineralization. We aimed to identify mutation in DSPP, including the DPP coding region, contributing to inherited dentin defects in a Korean family with DGI-II. Clinical and radiographic examinations were performed, and all five exons and exon-intron boundaries of the DSPP gene were sequenced. Additionally, allele-specific cloning for highly repetitive DPP region was performed. By sequencing and cloning, a heterozygous single nucleotide deletion (c.2688delT) was identified. The identified mutation caused a frameshift in the DPP coding region. This frameshift mutation would introduce hydrophobic amino acids instead of hydrophilic amino acids and would result in a change in the characteristics of DPP.

From diagnosis to treatment of mucopolysaccharidosis type VI: A case report with a novel variant, c.1157C>T (p.Ser386Phe), in ARSB gene

  • Yoo, Sukdong;Lee, Jun;Kim, Minji;Yoon, Ju Young;Cheon, Chong Kun
    • Journal of Genetic Medicine
    • /
    • v.19 no.1
    • /
    • pp.32-37
    • /
    • 2022
  • Mucopolysaccharidosis type VI (MPS VI) is an autosomal recessive lysosomal disorder caused by the deficiency of arylsulfatase B due to mutations in the ARSB gene. Here, we report the case of a Korean female with a novel variant of MPS VI. A Korean female aged 5 years and 8 months, who is the only child of a healthy non-consanguineous Korean couple, presented at our hospital for severe short stature. She had a medical history of umbilical hernia and recurrent otitis media. Her symptoms included snoring and mouth breathing. Subtle dysmorphic features, including mild coarse face, joint contracture, hepatomegaly, and limited range of joint motion, were identified. Radiography revealed deformities, suggesting skeletal dysplasia. Growth hormone (GH) provocation tests revealed complete GH deficiency. Targeted exome sequencing revealed compound heterozygous mutations in the ARSB genes c.512G>A (p.Gly171Asp; a pathogenic variant inherited from her father) and c.1157C>T (p.Ser386Phe; a novel variant inherited from her mother in familial genetic testing). Quantitative tests revealed increased urine glycosaminoglycan (GAG) levels and decreased enzyme activity of arylsulfatase B. While on enzyme replacement therapy and GH therapy, her height increased drastically; her coarse face, joint contracture, snoring, and obstructive sleep apnea improved; urine GAG decreased; and left ventricular mass index was remarkably decreased. We report a novel variant-c.1157C>T (p.Ser386Phe)-of the ARSB gene in a patient with MPS VI; these findings will expand our knowledge of its clinical spectrum and molecular mechanisms.

Characterization of Antihypertensive Angiotensin I-Converting Enzyme Inhibitor from Recombinant E. coli (재조합 대장균으로부터 항고혈압 Angiotensin I-Converting Enzyme 저해제의 특성연구)

  • Kim, Jae-Ho;Jeong, Seung-Chan;Lee, Dae-Hyong;Lee, Jong-Soo
    • The Journal of Natural Sciences
    • /
    • v.16 no.1
    • /
    • pp.1-13
    • /
    • 2005
  • The angiotensin I-converting enzyme (ACE) inhibitor has anti-hypertensive effects and has long been used as prevention or remedy of hypertension. This study were carried out to produce and purify a new ACE inhibitor from recombinant E. coli and further elucidate its structure-function relationship. Recombinant pGEX-4T-3 containing ACE inhibitory peptide gene of Saccharomyces cerevisiae was transformed into E. coli BL21(DE3). Glutathione-S transferase (GST) fusion protein from E. Coli BL21(DE3) harboring the recombination pGEX-4T-3 was obtained and the ACE inhibitory peptide was purified with Sephadex G-25 column chromatography. The purified ACE inhibitory peptide was a novel decapeptide with sequence Tyr-Asp-Gly-Gly-Val-Phe -Arg-Val-Tyr-Thr which shows very low similarity to the other ACE inhibitory peptide sequence. The purified ACE inhibitor competitively inhibited ACE.

  • PDF

Effect of Quercetin in the UV-Irradiated Human Keratinocyte HaCaT Cells and A Model of Its Binding To p38 MAPK

  • Jnawali, Hum Nath;Lee, Eunjung;Shin, Areum;Park, Young Guen;Kim, Yangmee
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2787-2790
    • /
    • 2014
  • Quercetin is a major dietary flavonoid found in onions, apples, tea, and red wine, and potentially has beneficial effects on disease prevention. We carried out this study to investigate the effect of quercetin on UVB-induced matrix metalloproteinase-1 (MMP-1) expression in human keratinocyte HaCaT cells and to further understand the mechanisms of its action. The anti-inflammatory activity of quercetin was investigated and quercetin significantly suppressed the NO production in LPS-stimulated RAW264.7 mouse macrophages. Post treatment of quercetin decreased UV irradiation-induced phosphorylation of JNK, p38 MAPK, and ERK by 91%, 21%, and 17%, respectively. MMP-1 is mainly responsible for the degradation of dermal collagen during the aging process of human skin and quercetin suppressed the UVB-induced MMP-1 by 94%. Binding studies revealed that quercetin binds to p38 with high binding affinity ($1.85{\times}10^6M^{-1}$). The binding model showed that the 4'-hydroxy groups of the B-ring of quercetin participated in hydrogen bonding interactions with the side chains of Lys53, Glu71, and Asp168 and the 5-hydroxy group of the A-ring formed a hydrogen bond with the backbone amide of Met109. The major finding of this study shows that quercetin inhibits phosphorylation of JNK, p38 MAPK, and ERK pathway leading to the prevention of MMP-1 expression in human keratinocyte HaCaT cells. Therefore, our findings suggested the potentials of quercetin as a skin anti-photoaging agent.

Analysis of Single Nucleotide Polymorphisms of Leptin Gene in Hanwoo(Korean Cattle) (한우 Leptin 유전자의 단일 염기 다형성 분석)

  • Lee, J.-Min;Song, G.C.;Lee, J.Y.;Kim, Young-Bong
    • Journal of Animal Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.295-302
    • /
    • 2007
  • Leptin, the product of the obese(ob) gene, is an adipocyte-derived hormone for the regulation of whole- body energy storage and energy usage. It has been reported that the homozygous mutations in the gene for leptin(LEP) induce obesity and reduce energy expenditure. In cattle, LEP has significant roles directly or indirectly related with phenotypes such as body weight and fat deposits, therefore SNPs of LEP have been considered important genetic marker to estimate carcass fat content in cattle. In this study, SNPs were screened in LEP(2,222 bp) between intron 1 to 3'-UTR from 24 independent Hanwoo(Korean cattle) by PCR and DNA sequencing. Total 25 SNPs were found and two nonsynonymous SNPs including T1163A(V19E) and G3256A(G132D) were newly detected only from Hanwoo. Among 20 SNPs previously reported in cattle, 16 SNPs were found in Hanwoo; however, the frequencies of some SNPs were significantly different between Hanwoo and western cattle breeds. The other 4 SNPs were not detected from Hanwoo. These Hanwoo specific SNP patterns in LEP will be used in development of molecular marker and application to genetic improvement of Hanwoo.