• Title/Summary/Keyword: Asian mineral dust

Search Result 30, Processing Time 0.032 seconds

A Retrieval of Vertically-Resolved Asian Dust Concentration from Quartz Channel Measurements of Raman Lidar (라만 라이다의 석영 채널을 이용한 고도별 황사 농도 산출)

  • Noh, Young-Min;Lee, Kwon-Ho;Lee, Han-Lim
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.326-336
    • /
    • 2011
  • The Light Detection and Ranging (Lidar) observation provides a specific knowledge of the temporal and vertical distribution and the optical properties of the aerosols. Unlike typical Mie scattering Lidars, which can measure backscattering and depolarization, the Raman Lidar can measure the quartz signal at the ultra violet (360 nm) and the visible (546 nm) wavelengths. In this work, we developed a method for estimating mineral quartz concentration immersed in Asian dust using Raman scattering of quartz (silicon dioxide, silica). During the Asian dust period of March 15, 16, and 21 in 2010, Raman lidar measurements detected the presence of quartz, and successfully showed the vertical profile of the dust concentrations. The satellite observations such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) confirmed spatial distribution of Asian dust. This approach will be useful for characterizing the quartz dominated in the atmospheric aerosols and the investigations of mineral dust. It will be especially applicable for distinguishing the dust and non-dust aerosols in studies on the mixing state of Asian aerosols. Additionally, the presented method combined with satellite observations is enable qualitative and quantitative monitoring for Asian dust.

Effects of SiO2 in Turkish Natural Stones on Cancer Development

  • Dal, Murat;Malak, Arzu Tuna
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.4883-4888
    • /
    • 2012
  • In materials science, one of the new concerns in the construction industry, it is well established that mineral dust from rocks (stones) has adverse effects on human health. For instance, it is suspected that some mineral dusts in particular leads to occupational diseases, including lung cancer. The present research concerned the relationship between cancer and those workers who work in Turkish construction industry and quarries and are exposed to silica mineral dust from natural stones. One focus was cancer prevention methods applied in-site. In mining and construction industry where stone dust is widely used, silicosis induced lung cancer is frequently seen. Cancer cases which are seen across the regions mostly affected by silica containing dust in Turkey were identified and a survey was conducted of the methods to protect workers in the construction industry from exposure to silica dust.

Mineralogical Comparison between Asian Dust and Bedrock in Southern Mongolia (황사와 몽골 남부 기반암의 광물학적 비교)

  • Gi Young, Jeong
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.397-407
    • /
    • 2022
  • Mineralogical analysis of the bedrock of the Gobi Desert in southern Mongolia, the source of Asian dust, was conducted to trace the geological origin of the constituent minerals of Asian dust. The bedrock of the source of Asian dust consists of Paleozoic volcanics and volcaniclastic sedimentary rocks, Paleozoic granitic rocks, and Mesozoic sedimentary rocks. Paleozoic volcanics and volcaniclastic sediments lithified compactly, underwent greenschist metamorphism, and deformed to form mountain ranges. Mesozoic sedimentary rocks fill the basin between the mountain ranges of Paleozoic strata. In comparison to Paleozoic volcanic and sedimentary rocks, Mesozoic sedimentary rocks have lower contents of chlorite and plagioclase, but high contents of clay minerals including interstratified illite-smectite, smectite, and kaolinite. Paleozoic granites characteristically contain amphibole and biotite. Compared with the mineral composition of bedrock in source, Asian dust is a mixture of detrital particles originating from Paleozoic and Mesozoic bedrocks. However, the mineral composition of Mesozoic sedimentary rocks is closer to that of Asian dust. Less lithified Mesozoic sedimentary rocks easily disintegrated to form silty soils which are deflated to form Asian dust.

Source Identification for Asian Dust Deposited on Domestic Area Using Sr-Nd Isotope Ratios in Spring, 2007 (Sr-Nd 동위원소를 이용한 국내 퇴적황사의 발원지 규명: 2007년 봄철 황사)

  • Youm, Seung-Jun;Lee, Pyeong-Koo
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.315-326
    • /
    • 2008
  • Recently, the occurrence and intensity of Asian Dust have dramatically increased in Korean peninsula, resulting in severe damages to the domestic social and economic field. The most useful way to prevent the damage of Asian Dust is the restraint of the occurrence of Asian Dust itself. However, Asian dust is the one of the natural phenomena, thus there is a basic limit to manage the Asian Dust. Though it is impossible to restrain the occurrence of Asian Dust in short time at present, it is a urgent matter to minimize the damage of Asian Dust. It is necessary to construct the basic data for understanding the harmfulness of Asian Dust, and to elucidate the source area of Asian Dust in connection with the maleficence of itself. In this study, the source area of Asian Dust in spring, 2007, is investigated using the Sr-Nd isotopic ratios which is the most common method to trace the source of geological materials. The relationships of Sr-Nd isotope ratios indicate that Asian Dust was originated from Central Loess Plateau and/or Ordos desert in spring, 2007.

Pedological Characteristics of Asian Dust in Korea (한국에 강하한 황사의 토양학적 특성)

  • Zhang, Yong-Seon;Kim, Yoo-Hak;Sonn, Yeon-Kyu;Lee, Gye-Jun;Kim, Myung-Sook;Kim, Sun-Kwan;Weon, Hang-Yeon;Joa, Jae-Ho;Eom, Ki-Cheol;Kim, Sang-Hyo;Kwak, Han-Kang;Kim, Han-Myeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.6
    • /
    • pp.301-306
    • /
    • 2005
  • Asian dust was collected in Korea and soils in the arid area of northern China were analysed for its physical and chemical properties, and mineral compositions for in order to interpret the origin of Aeolian soils and estimate the effect of dust wind on the soil environment in Korea. Asian dust was collected at Suwon in Korea from 2002 to 2004. Soil samples were collected from the desert and Loess plateaus around Gobi desert in China. As a result of analysis of desert soil distributed on northern region and Loess soils in China, it was observed that soil pH was about 9, organic matter 11 to $23g\;kg^{-1}$, and CEC 7.1 to $18.4cmolc\;kg^{-1}$, showing a high spatial variation among different sampling locations. About 62 to 80% of particles were composed of quartz and feldspars, 2 to 14% calcite ($CaCO_3$) and dolomite [$Ca{\cdot}Mg(CO_3)_2$], and trace other clay minerals. All the dust particles in Korea were below 50 m in diameter, and the mineral compositions were quartz, mica, feldspar and some clay minerals. Major components of clay mineral of Asian dust was mainly illite as compared to the kaolin of soils in Korea. The base saturation of exchangeable Ca, Mg, K and Na in the Asian dust was above 250% due to the high content calcite. Most of upland soil in Suwon was thin and sharp type, but Asian dust in Korea was the spherical shape. Asian dusts in Suwon, Korea, did not show a definite mineralogical variation of the dust during the collection period. Difference between the Asian dust collected in Korea and the soils in arid area of China was observed in the physical and chemical properties, especially for particle size distribution, cations such as Ca, Mg, K and Na. However, some similarities were found on the mineral compositions and chemical properties between Asian dust collected in Korea and the loess of China.

Dust Deposition and Weathering in Soils of Seoraksan (설악산 토양 내 황사의 퇴적과 풍화)

  • Jeong, Gi Young
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.255-264
    • /
    • 2021
  • Asian dust (Hwangsa) deposited on the surface of the Korean Peninsula is difficult to recognize their existence in mountainous terrain undergoing active erosion and weathering. This study examined Asian dust sediments mixed in soils by analysing clay mineralogy, mineral composition, and microtextures of fine silt (< 20 ㎛) in the alkali feldspar granite area of Seoraksan. The fine silt was composed of detrital particles derived from bedrocks, Asian dust sediments, and their weathering products. Clay minerals of 2:1 structural type, chlorite, amphibole, epidote, and Ca-bearing plagioclase were identified as eolian mineral particles. During the weathering of the bedrock composed of quartz and alkali feldspars, albite was partially weathered to produce small amounts of gibbsite and kaolin minerals. Hydroxy-Al interlayered clay minerals were formed by the exchange and fixation of polynuclear Al cationic species into the interlayers of expandable 2:1 clay minerals dominated by illite-smectite series clay minerals. Contribution of Asian dust to the fine silt of soils was estimated around 70% on the basis of total contents of 2:1 phyllosilicates.

Comparison Study of Numerical Simulations Associated with Emission Conditions during Asian Dust Events

  • Kim, Yoo-Keun;Song, Sang-Keun;Jeong, Ju-Hee
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.518-519
    • /
    • 2003
  • Many studies of Asian dust have been undertaken to investigate dust sources, their transport and deposition mechanisms, their optical and chemical properties, and their physical characteristics. These studies have used meteorological parameters, optical thickness, and mineral compositions derived from satellite images, lidar, sunphotometer, and other ground-based instruments in East Asia (Chun et al., 2001; Murayama et al., 2001). (omitted)

  • PDF

Mineralogical Properties of Asian Dust in April 6 and 15, 2018, Korea (2018년 4월 6일과 15일 황사의 광물학적 특성)

  • Jeong, Gi Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.103-111
    • /
    • 2018
  • Mineralogical properties of two Asian dust (Hwangsa) samples collected during dust events in April 6 and 15, 2018 were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD analyses showed that Asian dusts were dominated by phyllosilicates (62 wt%) comprising illite-smectite series clay minerals (ISCMs) (55%), chlorite (3%) and kaolinite (4%). Nonphyllosilicate minerals were quartz (18%), plagioclase (9%), K-feldspar (3%), calcite (3%), and gypsum (2-4%). Mineral compositions determined by SEM chemical analyses were consistent with XRD data. ISCMs occur as submicron grains forming aggregate particles or coating coarse mineral grains such as quartz, plagioclase, K-feldspar, chlorite, and calcite. The ISCMs are often associated with calcite nanofibers and gypsum blades. Mineralogical properties of 2018 dusts were similar to those of previous dusts although clay contents were higher than that of coarse 2012 dust.

Effects of Asian Dust (KOSA) Deposition Event on Bacterial and Microalgal Communities in the Pacific Ocean

  • Maki, Teruya;Ishikawa, Akira;Kobayashi, Fumihisa;Kakikawa, Makiko;Aoki, Kazuma;Mastunaga, Tomoki;Hasegawa, Hiroshi;Iwasaka, Yasunobu
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.3
    • /
    • pp.157-163
    • /
    • 2011
  • Atmospheric aerosol deposition caused by Asian dust (KOSA) events provide nutrients, trace metals, and organic compounds over the Pacific Ocean that enhance ocean productivity and carbon sequestration and, thus, influence the atmospheric carbon dioxide concentrations and climate. Using dust particles obtained from the snow layers on Mt. Tateyama and the surface sand of Loess Plateau in incubation experiments with natural seawater samples on a shipboard, we demonstrate that dust-particle additions enhanced the bacterial growth on the first day of incubation. Gram-positive bacterial group and alpha-proteobacteria were specifically detected form seawater samples including the mineral particles. Although the remarkable dynamics of trace elements and nutrients depend on dust-particle additions, it is possible that organic compounds present in the mineral particles or transported microbial cells could also contribute to an increase in the quantities of bacteria. The chlorophyll concentrations at fractions of every size indicated a similar pattern of change between the seawater samples with and without the dust-particle additions. In contrast, the chlorophyll measurement using submersible fluorometer revealed that the dynamics of phytoplankton composition were influenced by the dust-particles treatments. We conclude that the phytoplankton that uses the bacterial products would increase their biomass. We show that KOSA deposition can potentially alter the structures of bacterial communities and indirectly influence the patterns of marine primary production in the Pacific Ocean.

Pollution Level of Heavy Metals of Asian Dust in Daejeon Area, 2008 (2008년 대전지역에서 발생한 황사의 중금속 오염도)

  • Lee, Pyeong-Koo;Bae, Beob-Geun
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.8-25
    • /
    • 2014
  • The aims of this study were to determine concentrations of selected metals in Asian and non-Asian dust collected in Daejeon, Korea between February 2008 and December 2008 and to estimate the pollution level. The geochemical analyses of Asian dust (AD) and Non Asian dust (NAD) show that the mean concentrations of As, Cd, Cu, Pb, Zn, Zr, Sb, Mo and S reached levels up to 16, 209, 31, 43, 81, 28, 31, 122 and 302 times higher, respectively, than those in uncontaminated Chinese desert soils. These results indicate that both AD and NAD serve as an atmospheric repository for trace and heavymetal accumulation. The the enrichment factor (EF) and pollution index (PI) show that AD and NAD were severely contaminated by S, Mo, Zr, Cd, Pb, Zn, Sb, Cu, and As. All indices for these metals showed either strong or notably high level of pollution relative to Chinese desert soil, principally due to the severe atmospheric pollution derived from anthropogenic activities in heavily industrial Chinese cities. Therefore, Mo, Cd, Zr, As, Cu, Sb, Pb, and Zn are the ones most strongly affected by anthropogenic inputs such as airborne pollutants.