• Title/Summary/Keyword: Ash weight

Search Result 1,054, Processing Time 0.025 seconds

A Study on Utilization Method of Paper Ash in Industrial Waste (산업폐기물인 제지회의 활용방안에 관한 연구)

  • Heo, Y.;Lee, C.K.;Lee, M.W.;Ahn, K.K.
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.135-141
    • /
    • 1999
  • This study is an experimental study to investigate the possibility of the utilization of paper ash as the cover, liner in waste disposal landfill and other construction materials. The sample used in these tests was obtained from Daehan paper mill. A series of tests were peformed to evaluate basic properties, compaction, permeability, compressive strength, consolidation, leaching, and CBR of paper ash. In order to investigate the soil engineering properties of paper ash, the test results were compared with those obtained of fly ash. The results of unconfined compression tests show that paper ash had a larger strength than the fly ash. Also, the maximum dry unit weight of paper ash was approximately 59~76.9% less than that of the fly ash. It was found from the results of leaching test that paper ash is classified as non-detrimental general wastes according to the waste management law.

  • PDF

An Experimental Study on the Sulfate Resistance of Fly Ash Antiwashout Underwater Concrete (플라이애시를 혼입한 수중불분리성 콘크리트의 내 황산염에 관한 실험적 연구)

  • Kwon, Joong-Hyen;Kim, Bong-Ik
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.40-46
    • /
    • 2011
  • This paper describes the effects of fly ash replacement on the sulfate resistance of antiwashout underwater concrete which was replaced cement by fly ash from 0% to 50%. and the experimental works were performed on sulfate acceleration test of 5%$Na_2SO_4$ solution to find out the variance of length and weight of specimens. The experimental result shows that the length of specimens of antiwashout underwater concrete age at 180day was highly increased compare with normal concrete by acceleration test. but the mixture which was replaced 50% of fly ash shows reduction of the expansion, weight various, compare with normal concrete specimen. accordingly by using fly ash as admixture in antiwashout underwater concrete in sea environment, it will makes more durable for the attacks of sulfate by sea water.

Effects of Dialysis and Various Drying Methods on Physical Properties of Alginates Prepared from Sea Tangle, Laminaria japonica (투석과 건조방법이 다시마(Laminaria japonica) 알긴산의 물성에 미치는 영향)

  • Lim, Yeong-Seon;You, Byeong-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.4
    • /
    • pp.226-231
    • /
    • 2005
  • To investigate the physical properties of sea tangle (Laminaria japonica) alginates, extracted by the Mexican process, the effects of extracting time and drying methods on intrinsic viscosities, MWs and DPs of alginates were examined. The MWs of alginates before and after dialysis decreased with increase of extracting time. The MW s before dialysis were lower than those after dialysis. The ash contents before dialysis decreased with increase of extracting time. After dialysis the ash contents of the alginates showed 10.4-10.9% of those, which were little affected by extracting time. In the ash composition after dialysis, the sodium content was 4.4 g/100 g, $90\%$ of total ash content. The ash contents, the intrinsic viscosities, the average molecular weight and the DPs of the alginates dried by AD before dialysis were higher than those by VF. The ash and uronic acid contents of alginates after dialysis showed $10.6-10.9\%\;and\l88.1-88.9\%$, respectively. But the intrinsic viscosities, the MWs and DPs of the alginates after dialysis gradually decreased by following dry methods. The decreased order was ADAD, ADVF, VFAD, VFVF. The coefficient of determination between MWs and DPs in the alginates having more than 300 kDa was 0.999.

Fabrication of Lightweight Aggregates Using Fly Ash from Coal Burning Heat Power Plant (화력발전소 발생 플라이애쉬를 이용한 인공골재 제조)

  • Yoon Su-Jong
    • Journal of Powder Materials
    • /
    • v.13 no.2 s.55
    • /
    • pp.102-107
    • /
    • 2006
  • Recycling industrial wastes such as fly ash from a coal burning heat power plant and shell from an oyster farming were investigated to prevent environment contamination as well as to enhance the value of recycling materials. In this study, the lightweight aggregates and the red bricks were fabricated from fly ashes with other inorganic materials and wastes. The starting materials of the lightweight aggregate were fly ash powder and water glass, and the compacts of these materials were heat treated at $1100^{\circ}C$. The fabricated lightweight aggregates had low bulk density, $0.9-1.2\;g/cm^3$, hence floated on the water and had the strength of 7.0-11.0 MPa and the modulus of 2900-3300 MPa which indicates it has enough strength as the aggregate. Another type of the light weight aggregate was prepared from fly ashes, shell powders and clays. The bulk density, porosity, and compressive strength of these aggregates were $1.19-1.34\;g/cm^3,\;18.3{\sim}56.1%$ and 5-12 MPa, respectively. The addition of a small amount of fly ash powder prevented hydration of the light weight aggregates. The red brick was also fabricated from the fly ash containing materials. It is suitable for the brick facing of a building as it has moderate strength and low water absorption rate.

Engineering Properties of Flowable Composite Soil with Waste Tire and Bottom Ash (폐타이어-저회가 혼합된 유동성 복합지반재료의 공학적 특성)

  • Kim, Yun-Tae;Kang, Hyo-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.52-58
    • /
    • 2010
  • This study investigated the engineering properties of waste tire powder-bottom ash added composite soil, which was developed to recycle dredged soil, bottom ash, and waste tire powder. Test specimens were prepared using 5 different percentages of waste tire powder content(0%, 25%, 50%, 75%, and 100% by weight of the dry dredged soil), three different percentages of bottom ash content (0%, 50%, and 100% by weight of the dry dredged soil), and three different particle sizes of waste tire powder (0.1~2 mm, 0.9~5 mm, and 2~10 mm). Several series of unconfined compression tests, direct shear tests, and flow tests were conducted. The experimental results indicated that the waste tire powder content, particle size of waste tire powder, and bottom ash content influenced the strength and stress-strain behavior of the composite soil. The flow value increased with an increase in water content, but decreased with an increase in waste tire powder content.

An experimental study on the field sound insulation performance of the light weight concrete panel using bottom ash (저회를 이용한 경량패널의 현장 차음성능에 관한 실험 연구)

  • Chung, J.Y.;Jeong, G.C.;Lee, B.K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.65-69
    • /
    • 2007
  • Recently, the method of the apartment building design is changing from wall type to moment structure. Because of this reason, dry wall systems are used plentifully. This study examines the sound insulation performance of the light weight concrete panel using bottom ash. There is the difference of airborne sound isolation between laboratory and field test. For the purpose of searching deviation, we use the prediction tool(Insul 6.0). First, we calculated the prediction data and measured the sound isolation in the wall at the lab. Then, we measured it in the field and compared them. At the base of these datum, we measured the difference.

  • PDF

Properties of Concrete Mixed with Waste Incinerated Bottom Ash (쓰레기 소각재를 혼입한 콘크리트의 재료특성 및 강도특성)

  • 어석홍;홍기호;최덕진;김희성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.217-222
    • /
    • 2002
  • The purposes of this study are to investigate the material characteristics and strength properties of concrete mixed with waste incinerated bottom ash(BA), and to evaluate the leaching of environmentally harmful heavy metals from the bottom ash itself and from hardened concrete mixed with bottom ash. For this purpose, two reference mixes with W/C ratios of 0.45 and 0.55 were used, and the replacement proportion of BA was varied with the ratios of 0%, 30%, 50%, 70%, and 100% by volume of fine aggregate in the reference mixes. The variation of compressive and splitting tensile strength, workability and unit weight of concrete were considered. Test results showed that the strengths, workability and unit weight decreased with increase in proportion of BA replaced. Leaching test results showed that there would be no environmentally harmful problem from using BA as the substitutes of fine aggregates in concrete.

  • PDF

Engineering Properties of Permeable Polymer Concrete Using Bottom Ash and Recycled Coarse Aggregate

  • Sung, Chan-Yong;Kim, Jong-Hyouk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.25-31
    • /
    • 2006
  • Permeable polymer concretes can be applied to roads, sidewalks, river embankment, drain pipes, conduits, retaining walls, yards, parking lots, plazas, interlocking blocks, etc. This study was to explore a possibility of using bottom ash as filler and recycled coarse aggregate of industrial by-products for permeable polymer concrete. The tests carried out at $20{\pm}1^{\circ}C$ and $60{\pm}2%$ relative humidity. At 7 days of curing, unit weight, void ratio, compressive and flexural strength and coefficient of permeability ranged between $1,652{\sim}1,828kgf/m^{3},\;15{\sim}29+%,\;18.2{\sim}24.5\;MPa,\;6.4{\sim}8.4\;MPa\;and\;6.8{\times}10^{-2}{\sim}1.7{\times}10^{-1}\;cm/s$, respectively. It was concluded that the bottom ash and recycled coarse .aggregate can be used in the permeable polymer concrete.

An Experimental study on the Manufacture and Mechanical Properties of concrete Utilizing Fly Ash and Crushed Sand (플라이애쉬와 부순모래를 이용한 콘크리트의 제조 및 역학적 특성에 관한 실험적 연구)

  • 박승범;오광진;호성수;강현선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.84-88
    • /
    • 1995
  • The results of an experimental study on manufacture and mechanical properties of concrete utilizing crushed sand and fly ash for construction materials are presented in theis paper. As the results show, the workability, compressive strength and freezing-thaw resistance were improved by proper contents of fly ash, replaced crushed sand, and air entraining agent. And the drying shinkage was decreased by proper contents of those. Also, the suitable weight contents of replacing ratio of crushed sand and weight ratio fly ash in concrete using crushed sand were in range of 30% and 15% respectively.

  • PDF

Properties of Mortar Using Lightweight Fine Aggregate Made by Bottom Ash Discharged Air Cooling Process according to Grading (건식공정 바텀애시 경량 잔골재의 입도 조건에 따른 모르타르의 특성)

  • Choi, Hong-Beom;Sun, Joung-Soo;Yu, Jae-Seong;Li, Mao;Choi, Duck-Jin;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.53-54
    • /
    • 2014
  • This study evaluates engineering properties of mortar using lightweight fine aggregate made by bottom ash discharged air cooling process according to grading. Then we confirm possibility of use as lightweight fine aggregate. Consequently, Mix using bottom ash need additional examination for a change with the passage of time of flow. Also, mix of S indicates similar compressive strength with mix of Plain and 16% decrease of unit weight compared to mix of Plain; while mix of B indicates 10% decrease of compressive strength and 16% decrease of unit weight. Therefore, this study shows that mix of S and B is superior compared with other mix.

  • PDF