• 제목/요약/키워드: Ash solution

검색결과 327건 처리시간 0.031초

Removal of Heavy Metals from Aqueous Solution by Fly Ash

  • Cho, Hee-Chan;Oh, Dal-Young
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.494-499
    • /
    • 2001
  • The present work investigates the possible use of fly ash for the removal of heavy metal ions from aqueous solutions. Batch experiments were conducted and the influences of metal concentration, pH, and fly ash concentration were investigated. Heavy metals used in these studies were zinc, lead and cadmium. Adsorption studies were done over a range of pH values (3-10) at $25^{\circ}C$ and heavy metal concentrations of 10-400 mg/L using fly ash concentrations of 10, 20 and 40 g/L. Experiments were also conducted without fly ash to determine the extent of heavy metal removal by precipitation. Kinetic and equilibrium experiments were performed and adsorption data were correlated with both Langmuir and Freundlich adsorption models. The results indicate that fly ash can be used as an adsorbent for heavy metals in the aqueous solutions, yet the degree of removal depends on the pH.

  • PDF

벽유동 방식 담체를 사용하는 SCR 촉매 반응기에서 재 퇴적이 변환 효율에 미치는 영향에 대한 연구 (Impact of Ash Deposit on Conversion Efficiency of Wall Flow Type Monolithic SCR Reactor)

  • 박수열
    • 동력기계공학회지
    • /
    • 제17권1호
    • /
    • pp.27-35
    • /
    • 2013
  • SCR (Selective Catalytic Reduction) on DPF (Diesel Particulate Filter) is a multi-functional after-treatment device which integrates soot filtration and DeNOx function into a single can. Because of its advantage in package and cost, the SCR on DPF is considered as a potential candidate for future application. It inherently employes wall flow type monolithic reactor so ash included in exhaust gas may deposit inside the inlet channel of this device. This study is intended to identify the impact of ash deposit on SCR reaction under wall flow type monolithic reactor. Simulation approach is used so relevant species transport equations for wall flow type monolith is derived. These equations can be solved together with momentum conservation equations and give solution for conversion performance. Both ash deposit and clean catalyst case are simulated and comparison of these two cases gives an insight for the impact of ash deposit on conversion performance. Ash deposit can be classified as ash layer and ash plug. and impact of ash deposit is described along with different morphology of ash deposit.

Structural performance of concrete containing fly ash based lightweight angular aggregates

  • Pati, Pritam K.;Sahu, Shishir K.
    • Advances in concrete construction
    • /
    • 제13권4호
    • /
    • pp.291-305
    • /
    • 2022
  • The present investigation deals with the production of the innovative lightweight fly ash angular aggregates (FAA) first time in India using local class 'F' fly ash, its characterization, and exploring the potential for its utilization as alternative coarse aggregates in structural concrete applications. Two types of aggregates are manufactured using two different kinds of binders. The manufacturing process involves mixing fly ash, binder, and water, followed by the briquetting process, sintering and crushing them into suitable size aggregates. Tests are conducted on fly ash angular aggregates to measure their physical properties such as crushing value, impact value, specific gravity, water absorption, bulk density, and percentage of voids. Study shows that the physical parameters are significantly enhanced as compared to commercially available fly ash pellets (FAP). The developed FAA are used in concrete vis-à-vis conventional granite aggregates and FAP to determine their compressive, split tensile and flexural strengths. Although being lightweight, the strength parameters for concrete containing FAA are well compared with conventional concrete. This might be due to the high pozzolanic reaction between fly ash angular aggregates and cement paste. Also, RCC beams are cast and the load-deflection behaviour and ultimate load carrying capacity signify that FAA can be suitably used for RCC construction. Hence, the utilization of fly ash as angular aggregates can reduce the dead load of the structure and at the same time serves as a solution for fly ash disposal and mineral depletion problem.

석탄회로 합성한 제올라이트에 의한 Sr(II) 및 Cs(I) 이온의 제거 특성 (Removal Characteristics of Strontium and Cesium tons by Zeolite Synthesized from Fly Ash)

  • 감상규;이동환;문명준;이민규
    • 한국환경과학회지
    • /
    • 제12권10호
    • /
    • pp.1061-1069
    • /
    • 2003
  • The adsorption behaviors of strontium and cesium ions on fly ash, natural zeolites, and zeolites synthesized from fly ash were investigated. The zeolites synthesized from fly ash had greater adsorption capabilities for strontium and cesium ions than the original fly ash and natural zeolites. The maximum adsorption capacity of synthetic zeolite for strontium and cesium ions was 100 and 154 mg/g, respectively, It was found that the Freundlich isotherm model could fit the adsorption isotherm. The distribution coefficients (K$\_$d/) for strontium and cesium ions were also calculated from the adsorption isotherm data, The distribution coefficients decreased with increasing equilibrium concentration of strontium and cesium ions in solution. By studying the removal of cesium and strontium ions in the presence of calcium, magnesium, sodium, potassium, sulfate, nitrate, nitrite, and EDTA (in the range of 0.01 - 5 mM) it was found that these coexistence ions competed for the same adsorption sites with strontium and cesium ions.

친환경 고성능 지오폴리머 페이스트의 적정배합 도출에 관한 연구 (A study on optimum mixing derivation of the enviroment-friendly high performance geopolymer paste)

  • 이강필;도윤석;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 추계 학술논문 발표대회
    • /
    • pp.107-110
    • /
    • 2009
  • After inquiring into physical characteristics of using fly ash and alkali solution, it was found that higher pH density is favorable to strength development at early age and the higher the age is, the higher the compressive strength gets. Also, it was found that when there is more addition of activator, the compressive strength is higher. I was shown that more than atmospheric curing, steam curing was favorable for development of compressive strength. When the temperature of curing temperature was higher, most of the compressive strengths were higher. Thus, based on this study, it was understood that environmental-friendly chemically combined concrete using fly ash and alkali solution can be utilized without using cement.

  • PDF

Experimental study on geopolymer concrete prepared using high-silica RHA incorporating alccofine

  • Parveen, Parveen;Singhal, Dhirendra;Jindal, Bharat Bhushan
    • Advances in concrete construction
    • /
    • 제5권4호
    • /
    • pp.345-358
    • /
    • 2017
  • This paper describes the experimental investigation carried out to develop geopolymer concrete using rice husk ash (RHA) along with alccofine. The study reports the fresh and hardened properties of the geopolymer concrete (GPC) activated using alkaline solution. GPC were prepared using different RHA content (350, 375 and $400kg/m^3$), the molarity of the NaOH (8, 12 and 16M). The specimens were cured at $27^{\circ}C$ and $90^{\circ}C$. GPC was activated using NaOH, $Na_2SiO_3$, and alccofine. Prepared GPC samples were tested for compressive and splitting tensile strengths after 3, 7 and 28 days. RHA was suitable to produce geopolymer concrete. Results indicate that behavior of GPC prepared with RHA is similar to fly ash based GPC. Workability and strength can be improved by incorporating the alccofine. Further, alccofine and heat curing improve the early age properties of the GPC. Heat curing is responsible for the initial polymerization of GPC which leads to high workability and improved mechanical properties of the GPC. High strength can be achieved by using the high concentration alkaline solution in terms of molarity and at elevated heat curing. Further, RHA based geopolymer concrete has tremendous potential as a substitute for ordinary concrete.

Effect of low-calcium fly ash on sulfate resistance of cement paste under different exposure conditions

  • Zhang, Wuman;Zhang, Yingchen;Gao, Longxin
    • Advances in concrete construction
    • /
    • 제7권3호
    • /
    • pp.175-181
    • /
    • 2019
  • Low-calcium fly ash (LCFA) were used to prepare cement/LCFA specimens in this study. The basic physical properties including water demand, fluidity, setting time, soundness and drying shrinkage of cement/LCFA paste were investigated. The effects of curing time, immersion time and wet-dry cycles in 3% $Na_2SO_4$ solution on the compressive strength and the microstructures of specimens were also discussed. The results show that LCFA increases the water demand, setting time, soundness of cement paste samples. 50% and 60% LCFA replacement ratio decrease the drying shrinkage of hardened cement paste. The compressive strength of plain cement specimens decreases at the later immersion stage in 3% $Na_2SO_4$ solution. The addition of LCFA can decrease this strength reduction of cement specimens. For all specimens with LCFA, the compressive strength increases with increasing immersion time. During the wet-dry cycles, the compressive strength of plain cement specimens decreases with increasing wet-dry cycles. However, the pores in the specimens with 30% and 40% LCFA at early ages could be large enough for the crystal of sodium sulfate, which leads to the compressive strength increase with the increase of wet-dry cycles in 3% $Na_2SO_4$ solution. The microstructures of cement/LCFA specimens are in good agreement with the compressive strength.

플라이애쉬를 혼합(混合)한 콘크리트의 내약품성(耐藥品性)에 관한 연구(硏究) (A Study on the Chemical Resistance of Concrete Substituting Fly ash)

  • 문한영;서정우;손형호
    • 대한토목학회논문집
    • /
    • 제8권1호
    • /
    • pp.103-112
    • /
    • 1988
  • 국산 플라이애쉬를 혼합(混合)한 시멘트경화체(硬化體)가 황산이나 염화칼슘침식에 대한 저항성이 포틀랜드 시멘트를 사용한 시멘트경화체(硬化體)보다 좋은 이유는 다음과 같다. 먼저 황산침식에 대한 저항성은 플라이애쉬가 석고생성(石膏生成)을 억제시키므로써 $C_3A$ 계(系) 수화물(水和物)이 ettringite로 전화(轉化)하는 것을 억제한 탓으로 생각된다. 한편 염화칼슘용액에 침지시킨 시멘트경화체(硬化體)의 경우, 염화칼슘의 이온전리작용(電離作用)에 의해 표면(表面)과 내부조직(內部組織)에 미세균열발생(微細龜裂發生)으로 열화현상(劣化現象)이 생기는 것을 플라이애쉬를 사용하므로서 억제하는데 유효하였다.

  • PDF

Phenomenological Model to Re-proportion the Ambient Cured Geopolymer Compressed Blocks

  • Radhakrishna, Radhakrishna;Madhava, Tirupati Venu;Manjunath, G.S.;Venugopal, K.
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권3호
    • /
    • pp.193-202
    • /
    • 2013
  • Geopolymer mortar compressed blocks were prepared using fly ash, ground granulated blast furnace slag, silica fume and metakaolin as binders and sand/quarry dust/pond ash as fine aggregate. Alkaline solution was used to activate the source materials for synthesizing the geopolymer mortar. Fresh mortar was used to obtain the compressed blocks. The strength development with reference to different parameters was studied. The different parameters considered were fineness of fly ash, binder components, type of fine aggregate, molarity of alkaline solution, age of specimen, fluid-to-binder ratio, binder-to-aggregate ratio, degree of saturation, etc. The compressed blocks were tested for compression at different ages. It was observed that some of the blocks attained considerable strength within 24 h under ambient conditions. The cardinal aim was to analyze the experimental data generated to formulate a phenomenological model to arrive at the combinations of the ingredients to produce geopolymer blocks to meet the strength development desired at the specified age. The strength data was analyzed within the framework of generalized Abrams' law. It was interesting to note that the law was applicable to the analysis of strength development of partially saturated compressed blocks when the degree of saturation was maintained constant. The validity of phenomenological model was examined with an independent set of experimental data. The blocks can replace the traditional masonry blocks with many advantages.

석탄 비산재로 합성한 Na-A형 제올라이트에 의한 구리와 아연 이온의 동역학적 흡착 특성 (Adsorption Kinetics of Cupper and Zinc Ion with Na-A Zeolite Synthesized by Coal Fly Ash)

  • 이창한
    • 한국환경과학회지
    • /
    • 제20권12호
    • /
    • pp.1607-1615
    • /
    • 2011
  • The adsorption performance of cupper and zinc ions($Cu^{2+}$ and $Zn^{2+}$) in aqueous solution was investigated by an adsorption process on reagent grade Na-A zeolite(Z-WK) and Na-A zeolite (Z-C1) prepared from coal fly ash. Z-C1 was synthesized by a fusion method with coal fly ash from a thermal power plant. Batch adsorption experiment with Z-C1 was employed to study the kinetics and equilibrium parameters such as initial metal ions concentration and adsorption time of the solution on the adsorption process. Adsorption rate of metal ions occurred rapidly and adsorption equilibrium reached at less than 120 minutes. The kinetics data of $Cu^{2+}$ and $Zn^{2+}$ ions were well fitted by a pseudo-second-order kinetics model more than a pseudo-first-order kinetics model. The equilibrium data were well fitted by a Langmuir model and this result showed $Cu^{2+}$ and $Zn^{2+}$ adsorption on Z-C1 would be occupied by a monolayer adsorption. The maximum adsorption capacity($q_{max}$) by the Langmuir model was determined as $Cu^{2+}$ 99.8 mg/g and $Zn^{2+}$ 108.3 mg/g, respectively. It appeared that the synthetic zeolite, Z-C1, has potential application as absorbents in metal ion recovery and mining wastewater.