• Title/Summary/Keyword: Ash contents

Search Result 1,987, Processing Time 0.024 seconds

A Study on the Mineral Contents of Korean Common Foods and Analytic Methods 1. Sodium (한국인의 상용 식품중 무기질 함량과 분석 방법 비교연구 1. 나트륨)

  • 송범호;황성희;이주돈;김희재;정해랑;문현경
    • Journal of Food Hygiene and Safety
    • /
    • v.6 no.3
    • /
    • pp.139-145
    • /
    • 1991
  • In order to observe the Na contents, Korean common foods, especially processed foods were analyzed by Atomic Absorption Spectrophotometer. 1. The Na contents of instant noodle (ramen) was 400-900 mg/100 g and Na contents of their soup powder was 10000-16000 mg/100 g. 2. The Na contents of corns and beans was very low but their processed foods, com Dake and soybean milk, had relatively high Na contents. 3. The Na contents of meats was 40-60 mg/100 g but the Na contents of meats products was 700-900 mg/100 g. 4. The Na contents of Davoring salt was 12000-38000 mg/100 g, those of soybean products was 3000-6OOO mg/100 g, and that of seasoning MSG was 8000-17000 mg/100 g. 5. There was no statistical difference between the results of wet ash method and dry ash method in the Na contents of all food groups.

  • PDF

Development of Fly Ash Super-Flowing Concrete (플라이애쉬를 사용한 2성분계 초유동 콘크리트의 개발)

  • 박연동;조일호;권영호;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.121-126
    • /
    • 1994
  • In this study, several rheological properties of binder pastes and concrete are investigated for the development of commercially available fly ash super-flowing concrete. Fly ash contents with 5 leves(0, 10, 20, 30, 40%), slag contents with 6 levels(0, 5, 15, 25, 35, 45%), and water-binder ratios with 4 levels(30, 33, 36, 39%) are selected for test variables to evaluate the super-flowing characteristics of binder pastes. For the estimation of the workability of super-flowing concrete, slump flow, funnel time, box height, and L-flow are measured and compared. As the results, the flow is decreased and the viscosity is increased with increasing fly ash content. Super-flowing concrete is succesfully produced with 30% fly ash replacement.

  • PDF

An Experimental Study on Thermal Conductivity of Controlled Low Strength Materials with Coal Ash (석탄회를 활용한 CLSM의 열전도도에 관한 실험적 연구)

  • Lee, Seung Jun;Lee, Jong Hwi;Cho, Hyun Soo;Chun, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.95-104
    • /
    • 2012
  • Due to current interest in creation of urban space and urban landscape, more emphasis has been placed on underground space development. With increasing number of underground power cables and its importance, a study of backfill materials for pipe is now imperative. Backfill materials require outstanding thermal characteristics since breakdown of cable insulation can be caused if heat generated from transmission of underground power cables had not been effectively discharged through backfill materials. Also, coal ash, which are industrial by-products, is being produced in high volume every year. Among them, ponded ash (PA) is not recycled and instead, mostly buried. Therefore in this study, thermal conductivity test based on mixture ratio (PA, ponded ash : FA, fly ash) was performed to evaluate the thermal conductivity characteristics of CLSM (controlled low strength materials) with coal ash. The results indicate that the mixture ratio (PA, ponded ash : FA, fly ash) of 80:20, water contents of 28~30%, and cement contents of 7-11% showed the highest conductivity at 0.796~0.884W/mK and thus, considered optimal in terms of recycling ponded ash (PA) as well as for maximizing utilization as backfill materials for pipe in underground.

Effects of Fly Ash on Components in Percolated Water and Rice Growth (석탄회 처리가 논 토양성분의 용탈과 수도생육에 미치는 영향)

  • Kim, Yong Woong;Yoon, Chung Han;Shin, Bang Sup;Kim, Kwang Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.226-235
    • /
    • 1996
  • This pot experiment was conducted to investigate the changes of leaching in percolated water of paddy soil in which rice was cultivated in conditions of 0%, 5%. 30% addition of bituminous and anthracite fly ash respectively in greenhouse. pH in percolated water was higher in non cultivated plot than in cultivated plot. pH of the fly ash treated plot was higher than that of the control plot. pH in the cultivated plot decreased gradually during the cultivation. The contents of $NH_4-N$, $NO_3-N$ and K in percolated water decreased rapidly after mid-July, and was very low in the cultivated plot. Over the cultivation time, P contents in percolated water was very low. $SiO_2$, contents in percolated water decreased rapidly after June. Na contents in percolated water was highest in mid-June and then decreased gradually. In the cultivated plot, Ca contents in percolated water was higher than that in the control plot. During the cultivation, Ca contents in percolated water decreased gradually. But, in later-term of cultivation. Ca contents in percolated water was relatively Mgh. Mg contents in percolated water decreased after mid-July, but decreased continuously till the later-term of cultivation. EC in the percolated water was highest in mid-June. and then decreased gradually. EC of fly ash treated plot was higher than that of the control plot. The soil pH was increased and phosphate content in the soil was accumulated very high by application of fly ashes in paddy field after rice cultivation. Fly ash treatment did not increase the contents of elements in percolated water compared with the control plot. The difference between anthracite and bituminous fly ash was not so clear. Fly ash treatment, inhibited early growth and tillering. But, in later-term of cultivation, the inhibition effects of nonproductive tillering was expected. Fly ash treatment will be good if it was applicated after last year's harvest because leaching would happen over fallowing time. Contents of inorganic elements in percolated water of fly ash treated plot was not so high compared with that in the control plot.

  • PDF

Analysis of Ash and Trace Metals in Korean Native Bee Honey

  • Kim, Seok-Chang;Lee, Jong-Tae;Park, Chae-Kyu;Shim, Sang-Kwon;Han, Sang-Bae;Kwak, Yi-Seong;Whang, Mi-Sun;Won, Jun-Yeon
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.154-156
    • /
    • 2006
  • Trace metals in honey have an influence on the taste of honey along with pollens. Western bee honeys, which are mostly collected from acacia, have less than 0.1% of ash. Savor of Korean native-bee honey is thought to be due to the difference of the contents of trace metals. Korean native-bee honeys collected from Jirisan District, which is the greatest producing area of native-bee honey in Korea, showed high contents of ash. Korean native-bee honeys from the districts other than Jirisan District also showed similar results($0.44{\sim}0.83%$ of ash) to those from Jirisan District. Potassium was found to be the principal factor of high content of ash with over 85% of trace metals in ash.

Influence of Fly Ash Application on Content of Heavy Metal in the Soil II. Content Change by the Successive Application (석탄회(石炭灰) 시용(施用)이 토양중(土壤中) 중금속(重金屬) 함량(含量)에 미치는 영향(影響) II. 운용(連用)에 따른 함량변화(含量變化))

  • Kim, Bok-Young;Lim, Sun-Uk;Park, Jong-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.2
    • /
    • pp.72-77
    • /
    • 1994
  • This study was conducted to investigate the influence of treatment of fly ash on heavy metal contents of the arable soil. Rice was cultivated on the two types of paddy field clay loam and sandy loam with 0, 12ton/10a of anthracite fly ash and bituminous coal fly ash application. And soybean was cultivated at the same type of upland fields with those ashes of 0, 9ton/10a, yearly for three years. At the harvest time, the heavy metal contents in the different layer were investigated. The results were summarized as follows : 1. The contents of some heavy metal were increased in the surface soils but didn't show the tendency in the deeper layer or soil texture. 2. In the paddy fields, the contents of Cd, Cu, Zn, Cr were increased. Meanwhile and the upland fields, the contents of Cd and Cr were increased with the successive application of Anthracite fly ash, but the others didn't show those tendency. 3. The contents of Cd, Cu and Zn in the paddy field, were increased but the upland field, the contents of Cd, Cr and Ni were increased by the successive application of bituminous coal fly ash.

  • PDF

Chemical Constituents Contents and Deviations of Threshed Burley Tobacco Followed by Crop Year (연도별 버어리종 가공엽의 화학성분 함량 및 편차)

  • 김상범;복진영;안대진;이종률
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.25 no.2
    • /
    • pp.95-102
    • /
    • 2003
  • To get the informations of quality uniformity of threshed burley tobacco produced from 1997 to 2001 and processed at various leaf processing factories, chemical constituents contents and coefficient of variation(C.V.) were analysed. The average chemical constituents contents of 12 grades during 5 years ranged as follows; nicotine 1.76~2.66%, total nitrogen 4.15~4.80%, crude ash 21.6~22.4% and chlorine 1.08~1.20%. The variations of chemical constituents contents among crop years was higher in nicotine while lower in crude ash. The nicotine content of upper leaves were influenced negatively by rainfalls, while total nitrogen content were influenced positively by air temperature and sunshine hours during July. The C.V. of chemical content in same grade was higher in chlorine and nicotine while lower in crude ash. The ratio of C.V. among leaf tobacco processing factories/C.V. of total sample in same grade was high in nicotine. To reduce the C.V. of chemical constituents, it is recommendable to thresh the leaf tobacco at one processing factory. When the leaves being processed at one factory, the decreasing effect of deviation was higher in nicotine, particularly.

Influence of Fly Ash Application on Content of Heavy Metals in the Soil -III. Content Change in the Rice and Soybean by the Application Rate (석탄회(石炭灰) 시용(施用)이 토양중(土壤中) 중금속(重金屬) 함량(含量)에 미치는 영향(影響) -III. 쌀과 콩중(中)의 중금속(重金屬) 함량변화(含量變化))

  • Kim, Bok-Young;Jung, Goo-Bok;Lim, Sun-Uk;Park, Jong-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.220-225
    • /
    • 1994
  • This study was conducted to investigate the influence of treatment of fly ash on heavy metal contents in the grain. Rice was cultivated on the two types of paddy field, clay loam and sandy loam soil, with 0, 4, 8, 12t/10a of anthracite fly ash and bituminous coal fly ash, respectively. And soybean was cultivated on the same types of upland field with those of 0, 3, 6, 9t/10a, respectively. Also. rice and soybean were cultivated the same types of paddy and upland field with those ashes of 0, 12ton/10a and 0, 9ton/10a, yearly for three years. At the harvest time, the heavy metal contents in rice and soybean were Investigated. The results were summarized as follows : 1. Amount of application. 1) The contents of Cd in brown rice increased in the clay loam soil. Cr and Ni increased sandy loam soil with the application of anthracite fly ash. 2) The contents of Zn in rice increased in the sandy loam soil with the application of bituminous coal fly ash. 3) The contents of Cu in soybean increased with the application of anthracite and bituminous coal fly ash, but Zn, Pb, Cr and Ni increased only with the bituminous. 2. Successive application. 1) The contents of Cd in brown rice increased in the clay and sandy loam soil, however Cu, Zn, Ni, Cr and Fe increased only in sandy loam soil with the anthracite fly ash. 2) The contents of Cr in soybean were increased in the clay and sandy loam soil, but Cu, Fe increased only sandy loam soil with anthracite fly ash. 3) The contents of Cd, Zn, and Cr in brown rice increased in the clay and sandy loam soil, but those of Cu, Mn increased only in the sandy loam soil with application of bituminous. 4) The contents of Cd, Pb, and Cr in soybean increased in the sandy loam soil with the application of bituminous coal fly ash.

  • PDF

A Study on the Possibility of Using Cement Raw Material through Chemical Composition Analysis of Pond Ash (화력 발전소 매립 석탄회의 화학성분 분석을 통한 시멘트 원료 활용 가능성 연구)

  • Lee, Jae-Seung;Noh, Sang-Kyun;Suh, Jung-Il;Shin, Hong-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.180-188
    • /
    • 2020
  • To replace Japanese coal ash used in the domestic cement production and to recycle large quantities of domestic pond ash, it is essential to develop the technologies for quality control of cement by using the domestic pond ash. Thus, in this study, the feasibility of using the pond ash as a raw material for cement was investigated through chemical composition and microstructure analysis. As a result, most of the domestic pond ash contained slightly more Fe2O3, chloride, and unburned carbon contents than Japanese coal ash. In particular, the contents of chloride were considerably low in the pond ash that was transferred to fresh water or collected from surface of landfill area. However, since circulating fluidized bed boiler coal ash had relatively high SO3 contents causing durability problems of cement, it was not suitable for use as a raw material for cement. Thus, to replace Japanese coal ash with the domestic pond ash, it is necessary to introduce the adjustment of mixture proportion of cement raw materials and the process of removing chloride in the pond ash.

Technology for the Preparation of Ash-free Coal from Low Rank Coal(LRC) (저등급 석탄으로부터 초청정석탄 제조 기술)

  • Lee, Sihyun;Kim, Sangdo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.443-450
    • /
    • 2008
  • Efficient use of low rank coals (LRC) have been investigated as a method to cope with recent high oil price. Among the coals used in industry, lignite and sub-bituminous coals are belong to the LRC, and have abundant deposit and are distributed worldwide, but high moisture contents and self ignition properties inhibits their utilization. In this paper, chemical coal cleaning to produce ash-free coal from LRC has been investigated. Two technologies, that is, UCC(Ultra Clean Coal) process removing ash from coal and Hyper Coal process extracting combustibles from coal were compared with. UCC process has merits of simple and reliable when it compared with Hyper Coal process, but the remaining ash contents werehigher than Hyper Coal. Hyper Coal has ash contents under the 200ppm when raw coal is treated with appropriate solvent and ion exchange materials to remove alkali materials in extracted solution. The ash-free coal which is similar grade with oil can be used as alternate oil in the industry, and also used as a high grade fuel for IGCC, IGFC and other advanced combustion technology.