DOI QR코드

DOI QR Code

A Study on the Possibility of Using Cement Raw Material through Chemical Composition Analysis of Pond Ash

화력 발전소 매립 석탄회의 화학성분 분석을 통한 시멘트 원료 활용 가능성 연구

  • 이재승 ((재)한국건설생활환경시험연구원 건설재료센터) ;
  • 노상균 ((재)한국건설생활환경시험연구원 건설재료센터) ;
  • 서정일 ((재)한국건설생활환경시험연구원 건설재료센터) ;
  • 신홍철 ((재)한국건설생활환경시험연구원 건설재료센터)
  • Received : 2020.12.04
  • Accepted : 2020.12.28
  • Published : 2020.12.31

Abstract

To replace Japanese coal ash used in the domestic cement production and to recycle large quantities of domestic pond ash, it is essential to develop the technologies for quality control of cement by using the domestic pond ash. Thus, in this study, the feasibility of using the pond ash as a raw material for cement was investigated through chemical composition and microstructure analysis. As a result, most of the domestic pond ash contained slightly more Fe2O3, chloride, and unburned carbon contents than Japanese coal ash. In particular, the contents of chloride were considerably low in the pond ash that was transferred to fresh water or collected from surface of landfill area. However, since circulating fluidized bed boiler coal ash had relatively high SO3 contents causing durability problems of cement, it was not suitable for use as a raw material for cement. Thus, to replace Japanese coal ash with the domestic pond ash, it is necessary to introduce the adjustment of mixture proportion of cement raw materials and the process of removing chloride in the pond ash.

국내 화력 발전소에서는 연간 900만 ton 이상의 석탄회가 발생되고 있으며, 약 30%는 재활용되지 못하고 매립되고 있다. 현재 국내 매립장은 대부분이 만지 상태에 이르렀고, 해양 환경오염 발생이 우려되어 대량의 재활용 방안이 필요할 실정이다. 한편, 환경부는 그동안 시멘트 점토질 원료로 사용되는 일본산 석탄회의 수입 규제를 추진하고 있어 대체재의 개발이 시급한 상황이다. 따라서 본 연구에서는 국내 매립 석탄회의 화학성분을 분석하고, 일본산 석탄회와 비교를 통해 시멘트 원료로의 활용 가능성을 검토하였다. 그 결과를 요약하면 SiO2는 전체적으로 다소 낮은 값을 나타내 규산질 원료의 사용량을 증가시킬 필요가 있다. Al2O3는 특별한 경향은 없으나, 일부 낮은 값을 나타내는 경우는 점토질 물질이 부족할 수 있어 매립 석탄회의 사용량 증대를 검토해야 한다. Fe2O3는 전체적으로 다소 높은 값을 나타내 철질 원료의 사용량 감소가 가능할 것으로 판단된다. 국내 매립 석탄회는 전체적으로 염화물을 포함하고 있으며, 염소 제거공정을 통해 상당부분 제거될 것으로 판단되나, 시멘트 품질 및 장비의 유지관리 측면을 고려하면 담수 이송 및 표층부 매립 석탄회가 사용에 유리하다. 따라서 국내 매립 석탄회는 시멘트 광물 구성을 위한 시멘트 원료의 배합비 조정과 염소 제거공정을 통해 일본산 석탄회의 대체가 가능할 것으로 분석된다.

Keywords

References

  1. Cho, H.. N., Maeng, J. H., Kim, E. Y. (2017), Studies on Expanding Application for the Recycling of Coal Ash in Domestic, Journal of Environmental Impact Assessment, 26(6), 563-573. https://doi.org/10.14249/EIA.2017.26.6.563
  2. Hyun, H. G., Kim, H. G., Chun, B. S. (2010), Characteristics of the Freezing and Thawing for Controlled Low-Strength Material Using Pond Ash, Journal of the Korean Geo-Environmental Society, 11(7), 51-56.
  3. Jung, S. H., Kim, J. H., Kwon, S. J. (2013), Experimental Study on Evaluation of Material Properties in Cement Mortar with Pond Ash, Journal of the Korea institute for structural maintenance inspection, 17(3), 108-117. https://doi.org/10.11112/jksmi.2013.17.3.108
  4. Maeng, J. H. (2015), Plan to revitalize the recycling of coal ash from thermal power plants, Environment Forum, 20(4), 1-19.
  5. Lee, N. H. (2016), Research on installation, operation and management of exceptional landfill facilities, Ministry of Environment, Se Jong, 34-35.
  6. Cho, Y. K., Kim, C. S., Nam, S. Y., Cho, S. H., Lee, H. W., Ahn, J. W. (2019), Characterization of Foamed Concrete Using Calcium sulfaluminate, Journal of Energy Engineering, 28(1), 10-16. https://doi.org/10.5855/ENERGY.2019.28.1.010
  7. Lee, J. Y. and Jeon, B. Y. (2006), Cement industry and environment - Efforts to protect the environment through waste recycling, Ceramist, 9(3), 7-15.
  8. Arai, Y. (1990), Materials Chemistry of Cement, Chonnam National University Press, Gwang Ju, 23-149.
  9. Gwon, U. T., Kim, Y. H., Kim, S. R. (2011), Green technology in the cement industry, Ceramist, 14(2), 41-57.
  10. Chae, D. H., Kim, K. O., Shin, H. Y., Cho, W. J. (2014), Dynamic Characteristics of Liquidity Filling Materials Mixed with Reclaimed Ash, Journal of the Korean Geo-Environmental Society, 15(4), 5-11. https://doi.org/10.14481/jkges.2014.15.4.5
  11. Suh, D. H., Maeng, J. H. (2015), A Study on Expanding the Recycling of Coal Ash for Minimizing Environmental Impact Imposed by the Establishment of Thermal Power Plant Ash Ponds, Journal of Environmental Impact Assessment, 24(5), 472-486. https://doi.org/10.14249/eia.2015.24.5.472
  12. Lee, S. H., Na, J. Y., Kim, C. E. (1990), By-products generated when waste is used in the cement industry and its utilization plan-Focusing on By Pass Dust, Ceramist, 2(2), 22-28.
  13. Kim, D. S., Han, G. S., Lee, D. K. (2019), Recycling of useful Materials from Fly Ash of Coal-fired Power Plant, Clen Technology, 25(3), 179-188.
  14. Sheng, G., Li, Q., Zhai, J. (2012), Investigation on the hydration of CFBC fly ash, Fuel, 98, 61-66. https://doi.org/10.1016/j.fuel.2012.02.008
  15. Li, X. G., Chen, Q.B., Huang, K.Z., Ma, B. G., Wu, B. (2012), Cementitious properties and hydration mechanism of circulating fluidized bed combustion (CFBC) desulfurization ashes, Construction and Buliling Materials, 36, 182-187. https://doi.org/10.1016/j.conbuildmat.2012.05.017
  16. Kang, Y. H., Lim. G. H., Kim, S. J., Choi, Y. C. (2018), Feasibility Study on the Use of CFBC Ash as Non-sintered Binder, Journal of the Korea Institute for Structural Maintenance and Inspection, 22(5), 119-126. https://doi.org/10.11112/JKSMI.2018.22.5.119
  17. Lee, S. H. (2017), Revised Provision of KS L 5405 "Fly Ash" for CFBC Fly Ash to Applying Concrete, Magazine of RCR, 12(2), 20-25. https://doi.org/10.14190/MRCR.2017.12.2.020
  18. Indrek, K., Alex, H., Robert, H. H., Eric, M. S. (2003), Adsorption of surfactants on unburned carbon in fly ash and development of a standardized foam index test, Cement and Concrete Research, 33(12), 2091-2099. https://doi.org/10.1016/S0008-8846(03)00232-1