• Title/Summary/Keyword: Ash

Search Result 6,633, Processing Time 0.029 seconds

A Study on the Possibility of Using Cement Raw Material through Chemical Composition Analysis of Pond Ash (화력 발전소 매립 석탄회의 화학성분 분석을 통한 시멘트 원료 활용 가능성 연구)

  • Lee, Jae-Seung;Noh, Sang-Kyun;Suh, Jung-Il;Shin, Hong-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.180-188
    • /
    • 2020
  • To replace Japanese coal ash used in the domestic cement production and to recycle large quantities of domestic pond ash, it is essential to develop the technologies for quality control of cement by using the domestic pond ash. Thus, in this study, the feasibility of using the pond ash as a raw material for cement was investigated through chemical composition and microstructure analysis. As a result, most of the domestic pond ash contained slightly more Fe2O3, chloride, and unburned carbon contents than Japanese coal ash. In particular, the contents of chloride were considerably low in the pond ash that was transferred to fresh water or collected from surface of landfill area. However, since circulating fluidized bed boiler coal ash had relatively high SO3 contents causing durability problems of cement, it was not suitable for use as a raw material for cement. Thus, to replace Japanese coal ash with the domestic pond ash, it is necessary to introduce the adjustment of mixture proportion of cement raw materials and the process of removing chloride in the pond ash.

Effect of Carbonation Curing on the Hydration Properties of Circulating Fluidized Bed Boiler Ash (탄산화 양생이 순환유동층 보일러 애시의 수화특성에 미치는 영향)

  • Soo-Won Cha;Shi-Eun Lee;Won-Jun Lee;Young-Cheol Choi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.324-331
    • /
    • 2023
  • In this study, the hydration and carbonation properties of circulating fluidized bed boiler (CFBC) ash with different free-CaO contents were investigated. In addition, the possibility of utilizing CFBC ash with a high free-CaO content as a cementitious material was investigated by carbonation curing as a pretreatment. The CFBC ash with high free-CaO content exhibited rapid setting behavior and low early compressive strength when mixed with cement. For CFBC ash with high free-CaO content, carbon dioxide capture increased with the duration of carbonization curing. In addition, the free-CaO value decreased together, indicating that the free-CaO reacted with carbon dioxide. When the CFBC ash with high free-CaO content was pretreated by carbonation, no fresh set appeared, and the initial compressive strength was improved. From the results of this study, it is confirmed that CFBC ash with high free-CaO content has a high potential to be utilized as a cementitious material through proper carbonation curing.

Influence of Chemical Activators on Cement-Fly ash Paste and Strength Development of Concrete

  • Song, Jong-Taek;Yun, Sung-Dae;Kim, Jae-Young;Lee, Chin-Yong
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.103-106
    • /
    • 2000
  • The effects of replacement level, curing method and chemical admixtures were investigated in the cement-fly ash paste. The strength of cement-fly ash paste is lower than that of controlled cement paste only and the differences increase with replacement level. However, in steam curing, strength of cement-fly ash pastes is improved, especially, at early ages. In order to improve early strength, the use of $Na_2SO_4$in cement-fly ash paste increases the quality of concrete. In addition, improvement of strength of concrete including 30% of fly ash can be obtained and achieves the highest strength compared to other concrete mixtures.

  • PDF

Optimal Use of MSWI Bottom Ash in Concrete

  • Zhang, Tao;Zhao, Zengzeng
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.2
    • /
    • pp.173-182
    • /
    • 2014
  • An experimental investigation was carried out to evaluate the mechanical properties of concrete mixtures in which coarse aggregate was partially (30, 50 or 70 %) replaced with pre-washed municipal solid waste incineration (MSWI) bottom ash. Results indicated that bottom ash reduced the compressive strength, elastic modulus, and levels of heavy metals in leachate when used as a replacement for gravel, and that the maximum amount of MSWI bottom ash in concrete should not exceed 50 %. To analyze the effect mechanism of bottom ash in concrete, the degree of hydration and the following pozzolanic reaction characterized by the pozzolanic activity index, and the porosity distribution in cement mortar. The study indicates that improved properties of concrete are not solely later strength gain and reduced levels of heavy metals in leachate but also the progression of pozzolanic reactions, where a dense structure contains a higher proportion of fine pores that are related to durability.

Characteristics of Early Strength and Velocity Development in High Strength Concrete Containing Fly Ash (플라이애시를 함유한 고강도 콘크리트의 조기 강도와 속도 발현 특성)

  • 이회근;윤태섭;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.43-48
    • /
    • 2001
  • The use of fly ash in cement and concrete industries has many benefits including engineering, economic, and ecological aspects. However, it has a disadvantage of low strength development, especially at early ages. In this study, in order to overcome this problem, the early strength accelerating agent($NA_{2}$ $SO_{4}$) was selected and applied to the production of high strength concrete(HSC) containing fly ash. It was found that the compressive strength of fly ash concrete incorporating TEX>$NA_{2}$ $SO_{4}$ has greater than that of concrete containing fly ash only until 7 days after casting. From the microstructural point of view, ettringite increased and pores decreased in fly ash concrete incorporating TEX>$NA_{2}$ $SO_{4}$ , leading to the development of early age strength. It was also found that the velocity vs. strength relationship of HSC is considerably different from that of low-strength concrete(LSC). Therefore, in order to predict early age strength of HSC, a estimation equation different from that for LSC is needed.

  • PDF

Physical and Mechanical Efficiency of Plowable Fill Applied Bottom Ash(Anthracite Coal) (Bottom-ash(무연탄)를 적용한 고유동 충전재의 물리$\cdot$역학적 성능 비교)

  • 김성수;김동현;박광필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.263-268
    • /
    • 2001
  • In this study, the physical and mechanical characteristics of Bottom-ash exhausted from each of steam power plant was considered. The comparative objects were Bottom-ash in which a lot of powder contained and that in which less than that relatively contained. The difference in quantity of powder showed different effect on the character of flow. This study was undertaken on the use of Bottom-ash as a fine aggregate, and showed the optimum mixing and the character of flow according to each rate. And this study showed the quantity of water and binder added in different Bottom-ash was differently used.

  • PDF

Prediction of Compressive Strength of Fly Ash Concrete by a New Apparent Activation Energy Function (새로운 겉보기 활성에너지 함수에 의한 플라이애시 콘크리트의 압축강도 예측)

  • 한상훈;김진근;박연동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.947-952
    • /
    • 2001
  • The prediction model is proposed to estimate the variation of compressive strength of fly ash concrete with aging. After analyzing the experimental result with the model, the regression results are presented according to fly ash replacement content and water/cement ratio. Based on the regression results, the influence of fly ash replacement content and water/cement ratio on apparent activation energy was investigated. According to the analysis, the model provides a good estimate of compressive strength development of fly ash concrete with aging. As the fly ash replacement content increases, the limiting relative compressive strength and initial apparent activation energy become greater. The concrete with water/cement ratio smaller than 0.40 shows that the limiting relative compressive strength and apparent activation energy are nearly constant according to water/cement ratio. But, the concrete with water/cement ratio greater than 0.40 has the increasing limiting relative compressive strength and apparent activation energy with increasing water/cement ratio.

  • PDF

A Study on the Compressive Strength Property of Mortar using Rice Straw Ash (소성볏짚을 혼입한 모르타르의 압축강도 특성에 관한 연구)

  • Jeong, Euy-Chang;Shin, Sang-Yeop;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.265-266
    • /
    • 2012
  • The purpose of this study was to investigate the compressive strength property into mortar using rice straw ash. In an effort to evaluate the effects of rice straw ash firing temperatures on compressive strength properties of mortar, a change in the components of rice straw ash was observed according to firing temperatures, and compressive strength of mortar and X.R.F was measured. As a results, As the mortar with a mixture ratio of rice straw ash up to 15% was found to have a compressive strength superior to that of plain mortar.

  • PDF

Effects of CaCO3 Addition as a Flux on the Melting of Ash and Slag (CaCO3를 flux로 사용시 ash와 ash의 용융 특성에 미치는 영향)

  • 이재구;김재호;이효진;박태준;김상돈;김종진
    • Journal of Energy Engineering
    • /
    • v.4 no.3
    • /
    • pp.372-378
    • /
    • 1995
  • 분류층 석탄가스 반응온도에서 slag의 배출 조건을 원활하게 유지하기 위하여 CaCO3를 flux로 사용한 용융특성을 파악하였다. 첨가에 의한 용융온도는 flux 주입량에 따라 감소하다가 증가하였다. 최저 용융온도의 범위는 ash중 CaO 농도기준 30-40%의 범위에서 나타났으며, Base/Acid ratio에 따라 최소 용융온도는 ash중 무기물간의 eutetic effect가 작용함을 알 수 있었다. 고온에서의 slag 조성은 ash의 조성과 비교시 알카리 산화물의 휘발화와 SO2의 감소를 보여주고 있으며, salg중 환원성 가스가 증가함에 따라 금속 산화물의 환원에 의해 SiO2 조성은 증가하였다. CaCO3를 혼합한 시료를 질소분위기하에서 조제하여 점도를 측정한 결과, low silica ash의 경우 낮은 점도치를 보여주나, 250 poise 이하의 범위에서 고화되는 현상이 발생하였다. high silica ash에서는 CaCO3 투입에 의해 slag 점도는 감소하였는데, slag 분석 결과 CaO가 산소 제공물질(oxide doner)로 작용하여 silicate의 응집현상을 억제하는 것으로 나타났다.

  • PDF

Study on the Development of High Strength Admixture using Paper Sludge Ash (제지 애쉬를 사용한 고강도 혼화재 개발에 관한 연구)

  • 이재환;서형남;김창률;민경소
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.87-92
    • /
    • 1998
  • The purpose of this study is to use paper sludge ash as a material in manufacturing high strength admixture. The reactivity of paper sludge ash as iteself is low for the crystallized non-reactive $SiO_2$, but when the $SiO_2$ was removed, the phase component is mainly composed of glass phase which could react with cement hydrates. In this study, we manufactured high strength admixture using separated paper sludge ash, and examined the strength of mortar, spun concrete with and without this high strength admixture in steam curing. The strength of spun concrete with high strength admixture including paper sludge ash was more higher than that of spun concrete without admixture. As a result, it was found that paper sludge ash could be used to a pozzolanic material in manufacturing high strength admixture.

  • PDF