• 제목/요약/키워드: Asbestos containing materials

검색결과 38건 처리시간 0.034초

석면함유 공공 건축물의 위해성 평가 및 면적 분포 특성 (An Asbestos Risk Assessment and Areal Distribution of Asbestos Containing Materials in Public Buildings)

  • 송수진;장봉기;조봉현;김영지;허은협;이종대;손부순;이종화
    • 한국산업보건학회지
    • /
    • 제26권3호
    • /
    • pp.267-276
    • /
    • 2016
  • Objectives: This study, aims to examine the distribution characteristics of asbestos-containing building materials; risk assessment and area of distribution of asbestos-containing building materials depending on year of construction; building materials; types of building materials; and usage in public buildings in order to create fundamental data for safe management of public buildings. Methods: The asbestos investigation was conducted by an asbestos research institution from March to May 2014, targeting 41 public buildings which were subject to asbestos investigation in South Chungcheong-do Province. With respect to 381 presumed asbestos-containing materials, an investigation was conducted into whether they contained asbestos, asbestos type, content, year of construction, and use in the building were examined, and a risk assessment was performed. Results: Asbestos-containing building materials were used in 35 buildings(85.4%). Among them, 31(88.6%) were public buildings. Asbestos was detected in 73% of 381 suspected asbestos-containing materials, which were mostly ceiling materials (85.2%). The older the buildings, the more they showed a tendency to have a significantly higher risk assessment score. The ratio of average area with asbestos-containing building materials to total floor area was 57.6%, 44.1%, and 17.8% for buildings built in the 1980s, 1990s, and 2000s, respectively. This showed a tendency to be significantly higher with the age of the building. Conclusions: From the results above, it can be concluded that with the age of the buildings, the risk assessment score and the ratio of average area with asbestos-containing building materials to total floor area became significantly higher. Given the concern about the exposure to asbestos of residents and civil petitioners, safety management of older public buildings and measures for dismantling and removal of asbestos-containing building materials should therefore be urgently established.

중국산 해포석 내 석면 함유 유무 분석 (Asbestos Analysis of China Sepiolite by Transmission Electron Microscopy)

  • 송세욱;정용현;한정희
    • 한국산업보건학회지
    • /
    • 제23권3호
    • /
    • pp.205-211
    • /
    • 2013
  • Objectives: 21 sepiolite substances produced in China were investigated for the presence of asbestos in their materials. Materials and methods: In order to identify asbestos in sepiolite substances, test materials were analyzed using a transmission electron microscope equipped with energy dispersive X-ray spectrometer (TEM-EDS) for confirming their shape and components (atomic %). Results: Five of 21 sepiolte substances were asbestos-containing materials. Two chrysotile containing sepiolite proved to be asbestoscontaining materials, as did two chrysotile mixed with tremolite containing sepiolite. 16 sepiolite substances did not contain asbestos materials. Conclusions: When importing sepiolite substances, they must be analyzed to determine if there is asbestos in their materials.

우리나라 일부 석면 함유제품에 대한 실태조사 (A Survey for Some Asbestos Containing Products in Korea)

  • 기윤호;김정만;노영만;정누시아;김윤신;심상효
    • 한국환경보건학회지
    • /
    • 제34권1호
    • /
    • pp.108-115
    • /
    • 2008
  • This study was performed to investigate the current status, in Korea, of the production of asbestos containing products (ACPs) such as asbestos cement products, asbestos friction materials, asbestos joint sheets, asbestos textile products, and other asbestos-containing products from May 2 to July 30, 2007. The information on ACPs was obtained through written questionnaires from 16 of the 27 companies that produce ACPs in Korea. The production amounts of asbestos containing gaskets were 70 tons in 2004, 90 tons in 2005, and 55 tons in 2006 in 4 companies and that of asbestos friction materials were 435.5 tons in 2004, 540.4 tons in 2005, and 454.3s ton in 2006 in 10 companies. The type and number of ACPs were:- 19 asbestos cement products, produced by 2 companies; 47 asbestos friction materials produced by 18 companies; 12 asbestos joint sheets productes by 4 companies; 18 asbestos textile products from 3 companies, and 6 other asbestos products from 5 companies. The database of ACPs was constructed to include the products name, identification number, name of company, production year, composition, asbestos content (%), usage, specification, and a picture. The database will be used to efficiently identify ACPs and to avoid asbestos exposure in workers and the general population.

자동차 제조 사업장 근로자들의 석면 취급 이력 추정 (Estimation of the Asbestos Handling History of Workers in the Automobile Manufacturing Industry in Korea)

  • 최상준;김신범;최영은
    • 한국산업보건학회지
    • /
    • 제27권4호
    • /
    • pp.423-432
    • /
    • 2017
  • Objectives: This study was conducted to evaluate asbestos handling history of workers at automobile manufacturing plants in Korea. Methods: National regulations on asbestos and Korea Occupational Safety and Health Agency(KOSHA) database on the information of asbestos containing products were reviewed. We investigated asbestos related materials from one automobile manufacturing plant. Material safety data sheets(MSDS) collected in 2010, work environment monitoring results reported from 2000 to 2013, trade union reports and asbestos survey reports were reviewed. We also interviewed workers with long career and did walk-through survey. Results: The Ministry of Labor in Korea has permitted asbestos manufacturing since 1990. In 1997, the use of crocidolite and amosite asbestos were banned. In 2007, the Korean government announced a total ban on the manufacturing, importation and use of all kinds of asbestos, which took full effect in 2009. A total of 174 asbestos products information from KOSHA database was analyzed. Extruded cement panel for building, special brake for crane farm machinery, gasket, joint sheet and thermal insulator were produced until 2007. From automobile manufacturing plant survey, we confirmed that asbestos containing materials(ACM) such as gasket, heating induction materials have been used until 2011. Asbestos containing building materials(ACBM) such as bamlites, slate and ceiling tex were reported at 122 asbestos dismantling projects in 2014. Conclusion: Although the use of all kinds of asbestos were banned from 2009, ACMs and ACBMs installed before 2009 were still found at automobile manufacturing plant until 2011 and 2014 respectively. In particular, asbestos slates should be managed because most of slates had not been removed until 2014.

국내 석면 고형시료 중 석면의 종류 및 함유량에 관한 연구 (A Study on Types and Contents of Asbestos in Bulk Samples)

  • 최호춘;안선희;홍좌령;전봉환;이용필;박정일
    • 한국산업보건학회지
    • /
    • 제21권4호
    • /
    • pp.201-208
    • /
    • 2011
  • Objectives: According to the compliance of the asbestos-related regulation, every building has to be inspected for asbestos presence before its abatement work. This study was performed for identifying the types and contents of asbestos in building bulk samples. Materials and Methods: Bulk samples were collected during the asbestos inspection in 2010. We grouped the bulk samples into the regulated asbestos containing materials(RACM), presumed asbestos containing materials(PACM), and construction products. Additionally, the types of asbestos in all bulk samples were identified by polarization microscopy(PLM). Results: The RACMs were from building, house, pipe and facility. The RACMs were found mainly building (72.1%) and house (93.7%). The contents of chrysotile in building, house and facility were 66.9% (1-90%), 89.7% (2-90%) and 11.0% (2-90%), respectively. PACMs were surfacing material, thermal system insulation (TSI), and miscellaneous material. The miscellaneous materials that showed a high detection rate (79.2%) were ceiling, roofing and wall materials. Among them, the roofing materials had high chrysotile content(9.7%, 2-21%), followed by wall (8.7%, 2-21%) and ceiling (3.4%, 1-17%). In the construction products, asbestos was found mainly in slate (92.6%, 2-21%), including chrysotile. The slate had high asbestos content (9.7%, 2-21%), followed by cement flat board (8.7%, 2-19%) and textile (3.4%, 1-17%) Conclusions: Utilizing these results, it would be contributed to construct a useful ACM database and prevent from asbestos exposure to workers in the asbestos abatement and maintenance works.

건축물에 사용된 석면함유물질(ACMs)의 조사 및 위해성 평가 (Investigation and Risk Assessment of Asbestos-Containing Materials used in Buildings)

  • 김홍관;천영우;노영만;홍승한;김치년;이익모
    • 한국산업보건학회지
    • /
    • 제28권1호
    • /
    • pp.35-42
    • /
    • 2018
  • Objectives:본 연구의 목적은 석면함유물질의 사용 특성을 조사하고, "환경부고시 제2016-230호 석면건축물의 위해성 평가 방법"을 적용하여 위해성평가를 실시하였다. Methods:서울 및 경인지역에 위치한 건축물 100개소를 선정하였으며, 지역의 구분은 서울 29개, 인천 20개, 경기 51개이다. 건축연도는 1970년대 3개, 1980년대 11개, 1990년대 42개, 2000년대 44개로 구분하여 조사하였다. 고형시료의 분석은 고효율 필터가 부착된 후드 내에서 입체현미경을 이용하여 전처리 과정을 거쳐 편광현미경으로 분석하였으며, 분석결과가 함유율 1% 초과인 경우에 석면함유물질(Asbestos-Containing Materials, ACMs)을 석면으로 규정하였다. 석면건축자재의 위해성 평가 방법 및 기준은 "환경부고시 제2016-230호 석면건축물의 위해성 평가 방법"을 참고하여 석면함유물질에 노출된 위해성 등급은 세 가지 단계(높음, 중간, 낮음)로 평가하였다. Results: 건축물 100개소 중 30개소, 고형시료 416개 중 36개(8.6%)에서 석면함유물질이 있는 것으로 나타났다. 1990년대에 지어진 건축물 42개 중 18개에서 석면이 높은 비율로 검출되었으며, 2000년대에 지어진 건물 44개 중 7개에서 가장 낮은 비율로 검출되었다. "환경부고시 제2016-230호 석면건축물의 위해성 평가 방법"에 따라 평가를 실시한 결과, 2개 건축자재의 위해성평가 등급은 "중간"으로 나타났으며, 28개의 건축자재는 "낮음" 으로 나타났다. Conclusion: 석면은 정부에 의해 규제되고 있어 적극적으로 관리를 하여야 하고, 다양한 상황에서 얻은 데이터가 뒷받침하는 석면 노출 위해성 평가방법을 도입하여 시행이 필요할 것이다. 개인이 소유하고 있는 건물의 경우 건축주가 석면 노출의 위해성을 인지하고 있어야 할 것이다.

A Proposal of Hazard/Risk Assessment Criteria and an Asbestos Management Method for Asbestos-containing Building Materials

  • Park, Wha-Me;Kim, Yoon-Shin
    • 한국환경보건학회지
    • /
    • 제38권1호
    • /
    • pp.66-72
    • /
    • 2012
  • Objectives: The AHERA method by the US EPA, ASTM E2356-04, and HSG264 by the UK HSE, all of which are hazard/risk assessment methods for asbestos-containing building materials, were reviewed and compared based on 231 homogeneous areas. In addition, the current Act on Asbestos Safety Management (enforcement: April 29, 2012) was reviewed and analyzed. This trial provided fundamental data for improving the current asbestos hazard/risk assessment method. Methods: For the hazard/risk assessment of 77 asbestos-containing public buildings including schools, 231 homogeneous areas were selected, each of which was assessed using AHERA, ASTM E2356-04, and HSG264. Results: The matching rate of the hazard/risk assessment stood at 20.4 percent between AHERA and ASTM, at 71.4 percent between AHERA and HSG264 and at 17.8 percent between ASTM and HSG264. The AHERA method includes a seven-category rating scale. There were three categories, two of which have three subcategories. ASTM provides two decision-making charts consisting of ten rating scales for current condition estimation and for potential for disturbance estimation. In addition, the HSG264 method has a total of 20 scores with four items, and then provides four grades. This HSG264 method cannot clearly separate current condition and potential for disturbance. Conclusions: In the Korean Act on Asbestos Safety Management, the hazard/risk assessment method for asbestos-containing building materials should consider balance between current condition estimation and the potential for disturbance estimation.

Types and Health Hazards of Fibrous Materials Used as Asbestos Substitutes

  • Park, Seung-Hyun
    • Safety and Health at Work
    • /
    • 제9권3호
    • /
    • pp.360-364
    • /
    • 2018
  • Asbestos has been banned in many countries but many countries, including developing countries, are still using asbestos or materials containing asbestos. Substitute materials have been studied and developed over a long period of time because of the hazards of asbestos, and many people have recently shown interest in the hazards of substitute materials. However, comprehensive information about the types of asbestos substitutes, their use and health hazards, and references for the protection for the health of workers is limited. The purpose of this study is to provide people in the related industries with information on the types and health hazards of fibrous materials that can be used as asbestos substitutes. According to the patent resources from the United States and Europe, fibrous materials have been used to develop asbestos-free products since before 1980. Recently, the health hazards of asbestos substitutes have been assessed and many additional researches are required. However, only some of the substitute materials have been assessed for health hazards, and health hazard data has not been sufficient in many cases. Therefore, efforts should be made to minimize workers' exposure to substitute materials that do not contain asbestos.

석면함유폐기물 취급근로자의 석면노출수준 평가 (Assessment of asbestos exposure level of workers handling waste containing asbestos)

  • 정지연;김은영
    • 한국산업보건학회지
    • /
    • 제28권2호
    • /
    • pp.135-143
    • /
    • 2018
  • Objectives: There have been many studies on exposure assessment of workers at companies using asbestos as a raw material and at sites of the removal of materials containing asbestos. However, no research has been carried out on the asbestos exposure of workers in industries involving asbestos-containing waste, such as workers at collection and transportation service companies, mid-treatment companies(solidification of asbestos-containing waste), and landfill sites. The objective of this study was to assess the asbestos exposure concentrations of workers in industries handling waste containing asbestos. Methods: For this study, we carried out field investigations at 15 companies: seven collection and transportation service companies, three mid-treatment companies, and five final treatment companies(landfill sites). We took both personal and area samples. Results: The range of asbestos exposure levels of workers handing asbestos-containing wastes at collection, mid-treatment, and landfill companies were 0.000 fibers/cc-0.009 fibers/cc, 0.000 fibers/cc-0.038 fibers/cc, and 0.000 fibers/cc-0.024 fibers/cc, respectively. Conclusions: The asbestos exposure levels of workers at mid-treatment companies were higher than those at collection and transportation companies and at final treatment companies. In the case of collection and transportation workers, the possibility of exposure to levels exceeding those found in the present study is not particularly high considering the characteristics of the work. However, in the case of intermediate or final disposal workers, it is considered that there is a possibility of exposure to levels above those found in this study.

석면함유 건축물의 석면 노출 및 위해성 평가 (Asbestos Exposure and Health Risk Assessment in Asbestos-Containing Buildings)

  • 정재원;김광수;조순자;이상준
    • 한국환경과학회지
    • /
    • 제21권9호
    • /
    • pp.1069-1078
    • /
    • 2012
  • This study was performed to evaluate the asbestos exposure levels and to calculate excess lifetime cacer risks(ELCRs) in asbestos-containing buildings for maintenance and management. The range of airborne asbestos concentration of 33 buildings was 0.0018 ~ 0.0126 f/cc and one site exceeded indoor air-quality recommended limit 0.01 f/cc. And ELCRs based on US EPA IRIS(Integrated risk information system) model are 1.5E-06 ~ 3.9E-05 levels, and there was no site showed 1.0E-04 (one person per million) level or more, and 11 sites showed 1.0E-05 (one person per 100,000 people) level or more. To prevent the release of asbestos fibers, it needs operation and maintenance of asbestos-containing building materials, and there are some methods such as removal, repairment, enclosure and encapsulation. In conclusion, a risk-based air action level for asbestos in air is an appropriate metric for asbestos-containing building management.