• Title/Summary/Keyword: Asbestos containing equipment

Search Result 4, Processing Time 0.021 seconds

Survey of asbestos containing material in laboratory equipment at a university (대학 실험실 장비 중 석면 함유 조사)

  • Ham, Seung hon;Kim, Sung ho;Yeom, Jong soo;Chung, Jin ho;Lee, Ik mo;Yoon, Chung sik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.2
    • /
    • pp.110-115
    • /
    • 2011
  • Objectives: The aim of this study is to survey for finding asbestos containing equipment at the laboratories using picture based questionnaire and polarized light microscopic analysis. Methods: This study was conducted from 2009 to 2010 at a university in Seoul. In 2009, picture based questionnaire was distributed to 100 laboratories during the regular laboratory air quality monitoring. In 2010, we emailed all professors of the same university who have laboratories to participate voluntarily this survey. For the laboratories consented to participate survey, picture based questionnaire was distributed and collected. Suspected asbestos containing material and apparatus were collected at the laboratories which replied they have suspected material and equipment. Collected samples were analyzed with polarized light microscope at the laboratory accredited by ministry of employment and labor in Korea. Results: Total of 18 out of 100 laboratories reported that they had suspected asbestos containing equipment in 2009. Twenty-three samples were collected and three samples (13%), one heating mantle and two pairs of insulation gloves, contained asbestos. Thirty four laboratories reported they had suspected asbestos containing material or equipment in 2010. Sixty samples were collected and four of them (6%), two pairs of insulation gloves, one packing rope in dry oven and, one pair of tongs, contained asbestos. All founded asbestos was chrysotile and the content of chrysotile was more than 90% for all equipment except heating mantle which has less than 1%. Conclusions: We confirmed that asbestos was still used at the laboratories though strict regulations on asbestos use in Korea. The method of picture based questionnaire invented in this study could be applied for asbestos survey to other research institute or university where there are many laboratories because of its simplicity and accessibility without huge man power, cost and time.

A Study on the Efficient Measurement of Airborne Asbestos Concentrations at Demolition Sites of Asbestos Containing Buildings, etc. in Seoul (서울시내 석면함유 건축물 철거 현장 등에서의 효과적인 공기 중 석면농도 측정을 위한 연구)

  • Lee, Jinhyo;Lee, Suhyun;Kim, Jeongyeun;Kim, Jihui;Chung, Sooknye;Kim, Jina;Oh, Seokryul;Kim, Iksoo;Shin, Jinho;Eo, Soomi;Jung, Kweon;Lee, Jinsook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.113-121
    • /
    • 2014
  • Objectives: This study is intended to seek credible and efficient measurements on airborne asbestos concentrations that allow immediate action by establishing complementary data through comparative analysis with existing PCM and KF-100 method real-time monitoring equipment in working areas in Seoul where asbestos-containing buildings are being demolished, including living environment surroundings. Materials: We measured airborne asbestos concentrations using PCM and KF-100 at research institutes, monitoring networks, subway stations and demolition sites of asbestos-containing buildings. Through this measurement data and KF-100 performance testing, we drew a conversion factor and applied it via KF-100. Finally we verified the relationship between PCM and KF-100 with statistical methods. Results: The airborne asbestos concentrations by PCM for the objects of study were less than the detection limit(7 fiber/$mm^2$) in three (20%) out of 15 samples. The highest concentration was 0.009 f/cc. The airborne asbestos concentrations by PCM in laboratories, monitoring networks, subway stations and demolition sites of asbestos-containing buildings were respectively $0.002{\pm}0.000$ f/cc, $0.004{\pm}0.001$ f/cc, $0.009{\pm}0.001$ f/cc, and $0.002{\pm}0.000$ f/cc. As a result of KF-100 performance testson rooftops, the conversion factor was 0.1958. Applying the conversion factor to KF-100 for laboratories, the airborne asbestos concentrations ratio of the two ways was nearly 1:1.5($R^2$=0.8852). Also,the airborne asbestos concentration ratio of the two ways was nearly 1:1($R^2$=0.9071) for monitoring networks, subway stations, and demolition sites of asbestos-containing buildings. As a result of independent sample t-tests, there was no distinction between airborne asbestos concentrations monitored in the two ways. Conclusions: In working areas where asbestos-containing buildings are being demolished, including living environment surroundings, quickly and accurately monitoring airborne asbestos scattered in the air around the working area is highly important. For this, we believea mutual interface of existing PCM and a real-time monitoring equipment method is possible.

The Risk and Countermeasures of Asbestos Exposure at the Scene Activities of Fire Officials (소방공무원들의 현장 활동 시 석면노출의 위험성과 대응방안)

  • Lee, Jung-Il
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.68-78
    • /
    • 2010
  • The purpose of this study, fire officials during the field activities find causes fugitive dust of containing asbestos is the seriousness of the phenomenon is a threat case and through questionnaires, during on-site activities to prevent exposure to asbestos is effectively. Analysis of the relationship to field activities of fire officials and about the dangers of asbestos dust, asbestos cancer caused by asbestos, and to protect fire officials from the same disease like malignant mesothelioma, by varying the conditions of irrational, fire officials at the scene activities in advance of a deadly hazard is aimed to eliminate through optimization of organizational management and a safe and pleasant working conditions for fire officials through the deadly hazards at the scene of action is aimed to obviate. Also according to asbestos exposure by wearing protective equipment as well as thoroughly strengthen firefighting, firefighting awards to recognize the seriousness of the hazard factors, disease and provide compensation to the legal system, for diseases not yet recognized officially recognized by disaster supplemented by institutional, fire officials to improve morale and working conditions, etc. versus expectations is to improve public services.

A Study of Penetration Depth into Ceiling Materials containing Asbestos according to Dilution Rate of Scattering Prevention Agent (석면 함유 천장재의 안정화제 희석에 따른 침투깊이 연구)

  • Shin, Hyungyoo;Choi, Youngkue;Jeon, Boram;Ha, Jooyeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.1
    • /
    • pp.82-88
    • /
    • 2015
  • Objectives: This study is designed to analyze the penetration performance into ceiling materials containing asbestos of scattering prevention agents and investigate the change in penetration depth and viscosity according to the dilution rate of anti-scattering agents diluted with distilled water. Methods: Five different types of scattering prevention agents were spread on plate-type asbestos ceiling materials. The penetration depth of each coated ceiling material was measured by energy dispersive spectroscopy (EDS) analysis, based on X-ray fluorescence (XRF) results of the non-coated ceiling materials. Test equipment installed the ceiling materials and 60 minutes were collected at a flow rate of $10{\ell}/min$ at a filter of 25 mm. Results: An EDS analysis of the cross-section of ceiling materials constructed with a scattering prevention agent revealed that potassium is detected in the process of penetrating hardener solidification and this element could be an indicator for infiltration. When anti-scattering agents with different viscosities were constructed and the penetration depth was analyzed by potassium detection assessment using EDS, the depth results with viscosities of 5.0, 2.5, and 1.9 cP were 98.5, 103, and $147{\mu}m$, respectively. Penetration performance improved with decrease in viscosity. Conclusions: For asbestos ceiling materials, it is concluded that a higher dilution rate of the scattering prevention agent leads to lower viscosity, and hence a deeper penetration depth from $156{\mu}m$ to 3 mm. The asbestos anti-scattering properties according to the penetration depth will be confirmed through further study.