• Title/Summary/Keyword: As-Sb-Te

Search Result 136, Processing Time 0.028 seconds

Thermoelectric Property and p-n Transition Mechanism of Hot Pressed Bi4/3Sb2/3Te3 ($Bi_{4/3}Sb_{2/3}Te_3$ 가압소결체의 열전특성과 p-n 전이기구)

  • 박태호;유한일;심재동
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.855-862
    • /
    • 1992
  • Thermoelectric power, electrical conductivity and Hall effect were measured, as functions of temperature in the range of 100 to 600 K, on polycrystalline Bi4/3Sb2/3Te3 which had been prepared via uniaxial hot-pressing at different temperatures in the range of 373 K to 773 K, aiming at searching a profitable processing route to a polycrystalline thermoelectric material, a promising, viable alternative to a single crystalline one. It was found that, with increasing temperature of pressing under a fixed pressure, the material, normally a p-type prior to being hot-pressed, underwent a transition to n-type. This transition was confirmed to be due to plastic deformation during hot-pressing and interpreted as being attributed to the change of the major ionic defect BiTe' into TeBi˙at temperature high enough for structure elements mobility. Thermoelectric figure-of-merit of the hot-pressed material was discussed in connection with the p-n transition in addition to microstructure.

  • PDF

The properties of Sb-doped $Ge_{1}Se_{1}Te_{2}$ thin films application for Phase-Change Random Access Memory (상변화 메모리 응용을 위한 Sb-doped $Ge_{1}Se_{1}Te_{2}$ 박막의 특성)

  • Nam, Ki-Hyeon;Choi, Hyuk;Ju, Long-Yun;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1329-1330
    • /
    • 2007
  • Phase-change random access memory(PRAM) has many advantages compare with the existing memory. For example, fast programming speed, low programming voltage, high sensing margin, low power consume and long cyclability of read/write. Though it has many advantages, there are some points which must be improved. So, we invented and studied new constitution of $Ge_{1}Se_{1}Te_{2}$ chalcogenide material. Actually, the performance properties have been improved surprisingly. However, crystallization time was as long as ever for amorphization time. In this paper, we studied in order to make set operation time and reset operation voltage reduced. In the present work, by alloying Sb in $Ge_{1}Se_{1}Te_{2}$. we could confirm that improved its set operation time and reset operation voltage. As a result, the method of Sb-alloyed $Ge_{1}Se_{1}Te_{2}$ can be solution to decrease the set operation time and reset operation voltage.

  • PDF

Characterization of amorphous Sb-Bi-Te thin films as a function of Bi concentration (Bi 농도에 따른 비정질 Sb-Bi-Te 박막의 특성)

  • ;D. Mangalaraj
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.1
    • /
    • pp.28-34
    • /
    • 2002
  • Thin films of $Sb_{2-x}Bi_xTe_3$ (x = 0.0, 0.5, and 1.0) are grown by vacuum evaporation. XRD analysis shows the amorphous nature of the films, and the composition studies confirm the stoichiometry of the films. Microstructural parameters of the films have been calculated and used to explain the electrical and optical properties of the films. It is observed that the carrier type has changed from p- to n-type at higher concentration (x = 1.0) of Bi. The resistivity of the films decreases rapidly with the increase of Bi concentration. However, the refractive index and optical band gap of the films increase with the Bi concentration.

Optcal and thermal diffusion properties of Ge-Sb-Te multi-layered thin films for optical recording media (광기록매체용 Ge-Sb-Te 다층 박막의 광학적 특성 및 열전달 특성)

  • 김도형;김상준;김상열;안성혁
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.5
    • /
    • pp.394-400
    • /
    • 2001
  • We studied thermal diffusion properties diffusion properties of multi-layered Ge-Sb-Te alloy thin films for optical recording media by solving the thermal equation. Based on the numerical analysis of optical energy distribution and absorption inside multi-layered films including temperature gradient and heat transfer simultaneously, we proposed the optimum parameters of the input laser power and the multi-layer structure as follow. i) Input laser power is 18 mW, ii) laser exposure time is 60 ns, iii) the thicknesses of the lower and the upper ZnS-SiO$_2$are 140 nm and 20~30 nm respectively, and iv) thickness of Ge-Sb-Te recording film is 20 nm.

  • PDF

Improvement of Thermoelectric Properties in Te-Doped Zintl Phase Magnesium-Antimonide

  • Rahman, Md. Mahmudur;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.445-449
    • /
    • 2021
  • Zintl compound Mg3Sb2 is a promising candidate for efficient thermoelectric material due to its small band gap energy and characteristic electron-crystal phonon-glass behavior. Furthermore, this compound enables fine tuning of carrier concentration via chemical doping for optimizing thermoelectric performance. In this study, nominal compositions of Mg3.8Sb2-xTex (0 ≤ x ≤ 0.03) are synthesized through controlled melting and subsequent vacuum hot pressing method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are carried out to investigate phase development and surface morphology during the process. It should be noted that 16 at. % of excessive Mg must be added to the system to compensate for the loss of Mg during melting process. Herein, thermoelectric properties such as Seebeck coefficient, electrical conductivity, and thermal conductivity are evaluated from low to high temperature regimes. The results show that Te substitution at Sb sites effectively tunes the majority carriers from holes to electrons, resulting in a transition from p to n-type. At 873 K, a peak ZT value of 0.27 is found for the specimen Mg3.8Sb1.99Te0.01, indicating an improved ZT value over the intrinsic value.

Phase Change Characteristics of Aux(Ge2Sb2Te5)1-x (x=0, 0.0110, 0.0323, 0.0625) Thin Film for PRAM (PRAM을 위한 Aux(Ge2Sb2Te5)1-x (x=0, 0.0110, 0.0323, 0.0625) 박막의 상변환 특성)

  • Shin, Jae-Ho;Baek, Seung-Cheol;Kim, Byung-Cheul;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.404-409
    • /
    • 2011
  • An amorphous $Ge_2Sb_2Te_5$ thin film is one of the most commonly used materials for phase-change data storage. In this study, $Au_x(Ge_2Sb_2Te_5)_{1-x}$ thin film amorphous-to-crystalline phase-change rate were evaluated in using 658 nm laser beam. The focused laser beam with a diameter <10 ${\mu}m$ was illuminated in the power (P) and pulse duration (t) ranges of 1-17 mW and 10-460 ns, respectively, with subsequent detection of the responsive signals reflected from the film surface. We also evaluated the material characteristics, such as optical absorption and energy gap, crystalline phases, and sheet resistance of as-deposited and annealed films. The result of experiments showed that the thermal stability of the $Ge_2Sb_2Te_5$ film is largely improved by adding Au.

Electrolyte Mechanizm Study of Amorphous Ge-Se Materials for Memory Application (Ge-Se의 스위칭 특성 향상을 위한 Sb-doping에 관한 연구)

  • Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.69-69
    • /
    • 2009
  • In other to progress better crystallization transition and long phase-transformation data of phase-change memory (PRAM), we investigated about the effect of Sb doping and Ag ions percolating into Ge-Se-Te phase-change material. Doped Sb concentrations was determined each of 10 wt%, 20 wt% and 30 wt%. As the Sb-doping concentration was increased, the resistivity decreased and the crystallization temperature increased. Ionization of Ag was progressed by DPSS laser (532 nm) for 1 hour. The resistivity was more decreased and the crystallization temperature was more increased in case of adding Ag layer under Sh-(Ge-Se-Te) thin film. At the every condition of thin films included Ag layer more stable states were indicated compare with just Sh-doped Ge-Se-Te thin films.

  • PDF

Electrodeposition of Antimony Telluride Thin Films and Composition-Dependent Thermoelectric Characterization

  • Kim, Jiwon
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.1
    • /
    • pp.18-23
    • /
    • 2020
  • Antimony telluride (SbxTey) thin films were synthesized by an electrodeposition method with a control of applied potential at room temperature. Characterization of electrical and thermoelectric properties such as conductivity, Seebeck coefficient, and power factor (P.F.) were conducted as a function of the chemical composition of the electrodeposited films. Morphology of thin films were dense and uniform and the composition was tailored from 25 to 60 at.% of the Sb content by altering the applied potential from -0.13 to -0.27 V (vs. SCE). The conductivity of the films were ranged from 2 × 10-4 ~ 5 × 10-1 S/cm indicating their amorphous behavior. The meaured Seebeck coefficient of films were relatively high compared to that of bulk single cyrstal SbxTey due to their low carrier concentration. The variation of the Seebeck coefficient of the films was also related to the change of chemical composition, showing the power factor of ~10 ㎼/mK2.

Synthesis and Characterization of (AgSbTe2)15(GeTe)85 Thermoelectric Powder by Gas Atomization Process (가스분무공정을 이용한 (AgSbTe2)15(GeTe)85 열전분말의 제조 및 특성평가)

  • Kim, Hyo-Seob;Lee, Jin-Kyu;Koo, Jar-Myung;Chun, Byong-Sun;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.449-455
    • /
    • 2011
  • In this study, p-type $(AgSbTe_2)_{15}(GeTe)_{85}$: TAGS-85 compound powders were prepared by gas atomization process, and then their microstructures and mechanical properties were investigated. The fabricated powders were of spherical shape, had clean surface, and illustrated fine microstructure and homogeneous $AgSbTe_2$ + GeTe solid solution. Powder X-ray diffraction results revealed that the crystal structure of the TAGS-85 sample was single rhombohedral GeTe phase, which with a space group $R_{3m}$. The grain size of the powder particles increased while the micro Vickers hardness decreased with increasing annealing temperature within the range of 573 K and 723 K due to grain growth and loss of Te. In addition, the crystal structure of the powder went through a phase transformation from rhombohedral ($R_{3m}$) at low-temperature to cubic ($F_{m-3m}$) at high-temperature with increasing annealing temperature. The micro Vickers hardness of the as-atomized powder was around 165 Hv, while it decreased gradually to 130 Hv after annealing at 673K, which is still higher than most other fabrication processes.

Thermolelectric Properties of p-type $Sb_{2-x}Bi_xTe_3$ grown by MOCVD (MOCVD법으로 성장된 p-형 $Sb_{2-x}Bi_xTe_3$ 박막의 열전특성)

  • Kim, Jeong-Hoon;Kwon, Sung-Do;Jung, Yong-Chul;Yoon, Seok-Jin;Ju, Byeong-Kwon;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.138-139
    • /
    • 2006
  • Metal organic chemical vapor deposition has been investigated for growth of $Sb_{2-x}Bi_xTe_3$ films on (001) GaAs substrates using diisopropyltelluride, triethylantimony and trimethylbismuth as metal organic sources. The thermoelectric properties were measured at room temperature and include Seebeck coefficient, electrical conductivity and Hall effect. In-plane carrier concentration and electrical Hall mobility were highly dependent on precursor's composition ratio and deposition temperature. The thermoelectric Power factor($={\alpha}^2{\sigma}$) was calculated from theses properties. The best Power factor was $2.6\;{\times}\;10^{-3}W/mK^2$, given by grown $Sb_{1.6}Bi_{0.4}Te_3$ at $450^{\circ}C$. These materials could potentially be incorporated into advanced thermoelectric unicouples for a variety of power generation applications.

  • PDF