• Title/Summary/Keyword: As contaminated soil

Search Result 1,170, Processing Time 0.029 seconds

Effects of Small Scale Post-Harvest Facility and Hygiene Education on the Level of Microbial Safety in Korean Leeks Production (영양부추 생산농가의 소규모 수확후 처리시설 적용과 위생교육에 따른 미생물학적 안전성 향상 효과)

  • Kim, Se-Ri;Kim, Jin-Bae;Lee, Hyo-Sup;Lee, Eun-Sun;Kim, Won-Il;Ryu, Song-Hee;Ha, Jihyung;Kim, Hwang-Yong;Ryu, Jae-Gee
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.3
    • /
    • pp.249-257
    • /
    • 2015
  • The purposes of this study were to develop a small scale post-harvest facility, and consequently to evaluate the effects of applying the facility along with hygiene education on the level of microbial safety in Korean leeks production. A total of 135 samples were collected at three Korean leeks farms in Yangju, Gyeonggi province. Food safety indicators (Aerobic plate count (APC), coliform count, and Escherichia coli) and foodborne pathogens (E. coli O157:H7, Salmonella spp., Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus) on/in the samples were assessed. The microbial load measured as APC with harvesting tools such as comb, chopping board, and knife, at the farms where the small scale post-harvest facility had been operated (Farms A and B) was lower than that at another farm having no post-harvest facility (Farm C) by 1.44~2.33 log CFU / $100cm^2$. Moreover, the chopping board from Farm C was observed being contaminated with B. cereus at 6.03 log CFU / $100cm^2$. The coliform counts from the samples increased by 0.57~1.89 log CFU/g after leeks was submerged in ground water for washing. E. coli was recovered from leeks, soil, and the ground water used in the washing process, while no E. coli O157:H7, Salmonella spp., and L. monocytogenes was detected. Our results indicated that the small scale post-harvest facility developed in this study as well as the hygiene education played an important role in enhancing the level of microbial food safety in the leeks production environment. However, a disinfection technique could be needed during the washing step in order to prevent a potential contamination.

Studies on the Contents of Pollutants in Soil and Leaves of Ornamental Trees in the Namhae Expressway (남해고속도로변(南海高速道路邊)의 식재수목(植栽樹木)에 대한 토양(土壤) 및 엽(葉)의 오염물질함량(汚染物質含量)에 대한 연구(硏究))

  • Kim, Jong Kab;Kim, Jai Saing
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.4
    • /
    • pp.352-358
    • /
    • 1990
  • This study was performed to analyze the pollutants contaminated in the soils and leaves of ornamental trees along the Namhae Express way. The results obtained were as follow ; 1. The contents of total sulfur in soils were generally high in site 8 with slope way and site 9 having more traffic volume, as 87 ppm and 74 ppm, respectively, 2. The contents of heavy metals in soils were lower than those of industrial areas and urban roads, and Fe and Pb contents were higher in sites having much traffic volume. 3. The contents of soluble sulfur in leaves were in the range of 0.08%-0.25%. and those of Pinus strobus and Cedrus deodara were the highest as 0.25% and 0.23%, respectively, and that of Euonymus japonica was 0.08%, the lowest. 4. In the case of heavy metals concentration in leaves, the contents of Fe, Mn, Pb, Zn and Cu were in the range of 68-340 ppm, 101-463 ppm, 2.4-4.9ppm, 33-60 ppm and 1.8-5.1 ppm, respectively. Except Fe, there was not a wide difference between sites and species. 5. In the contents of soluble S, Pb and Zn in leaves, the sites between Jinju and Masan having generally much traffic showed more contents than between Jinju and Hadong. Therefore, it is inferred that contents of S, Pb, and Zn are positive related to the traffic volume. 6. Only for Pb, there was significant correlation between the heavy metals in soils and the leaves at 1% level.

  • PDF

Adsorption of Arsenic onto Two-Line Ferrihydrite (비소의 Two-Line Ferrihydrite에 대한 흡착반응)

  • Jung, Young-Il;Lee, Woo-Chun;Cho, Hyen-Goo;Yun, Seong-Taek;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.227-237
    • /
    • 2008
  • Arsenic has recently become of the most serious environmental concerns, and the worldwide regulation of arsenic fur drinking water has been reinforced. Arsenic contaminated groundwater and soil have been frequently revealed as well, and arsenic contamination and its treatment and measures have been domestically raised as one of the most important environmental issues. Arsenic behavior in geo-environment is principally affected by oxides and clay minerals, and particularly iron (oxy)hydroxides have been well known to be most effective in controlling arsenic. Among a number of iron (oxy)hydroxides, for this reason, 2-line ferrihydrite was selected in this study to investigate its effect on arsenic behavior. Adsorption of 2-line ferrihydrite was characterized and compared between As(III) and As(V) which are known to be the most ubiquitous species among arsenic forms in natural environment. Two-line ferrihydrite synthesized in the lab as the adsorbent of arsenic had $10\sim200$ nm for diameter, $247m^{2}/g$ for specific surface area, and 8.2 for pH of zero charge, and those representative properties of 2-line ferrihydrite appeared to be greatly suitable to be used as adsorbent of arsenic. The experimental results on equilibrium adsorption indicate that As(III) showed much stronger adsorption affinity onto 2-line ferrihydrite than As(V). In addition, the maximum adsorptions of As(III) and As(V) were observed at pH 7.0 and 2.0, respectively. In particular, the adsorption of As(III) did not show any difference between pH conditions, except for pH 12.2. On the contrary, the As(V) adsorption was remarkably decreased with increase in pH. The results obtained from the detailed experiments investigating pH effect on arsenic adsorption show that As(III) adsorption increased up to pH 8.0 and dramatically decreased above pH 9.2. In case of As(V), its adsorption steadily decreased with increase in pH. The reason the adsorption characteristics became totally different depending on arsenic species is attributed to the fact that chemical speciation of arsenic and surface charge of 2-line ferrihydrite are significantly affected by pH, and it is speculated that those composite phenomena cause the difference in adsorption between As(III) and As(V). From the view point of adsorption kinetics, adsorption of arsenic species onto 2-line ferrihydrite was investigated to be mostly completed within the duration of 2 hours. Among the kinetic models proposed so for, power function and elovich model were evaluated to be the most suitable ones which can simulate adsorption kinetics of two kinds of arsenic species onto 2-line ferrihydrite.

Trace Element Analysis and Source Assessment of Household Dust in Daegu, Korea (대구지역 일반주택의 축적먼지 중 미량원소성분 분석과 오염원 평가)

  • Do, Hwa-Seok;Song, Hee-Bong;Jung, Yeoun-Wook;Yoon, Ho-Suk;Kwak, Jin-Hee;Han, Jeong-Uk;Kang, Hye-Jung;Phee, Young-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.69-78
    • /
    • 2010
  • In order to investigate the degree of household dust contamination, 48 samples of household dust (24 from urban area and 24 from rural area) in Daegu city were collected in vacuum cleaner during January to February 2009. Samples were sieved below 100 ${\mu}m$, and 14 elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V, Zn) were analyzed using ICP after acid extraction. Results obtained from the source assessment of trace elements using enrichment factor showed that Ca, Fe, K, Mg, Mn, Na, and V were influenced by natural sources such as weathered rock and resuspended soil, while Cd, Cr, Cu, Ni, Pb and Zn were influenced by anthropogenic sources such as fuel combustion and waste incineration. Concentrations were remarkably higher in components from natural sources than in components from urban anthropogenic sources. Household dust in urban area was more affected by anthropogenic sources compared with that of rural area. Pollution index of heavy metals revealed that urban area was 1.8 times more contaminated with heavy metal components than rural area. The correlation analysis among trace elements indicated that components were correlated with natural sources-natural sources (Al-Mg, Al-Mn, Fe-Mn) and natural sources-anthropogenic sources (Al-V, Fe-Cr, V-Mn) in both urban area and rural area. Trace element components of rural area were more correlated than those of urban area. Houses that use oil for heating fuel had relatively higher contents of heavy metals rather than those using gas or electricity for heating fuel. Houses with children also had higher contents of heavy metals. In addition, the age of houses was found to influence the heavy metal levels in household dusts, with older houses (>10years) having higher concentrations than newer houses (<10years) and houses located near the major road (<10 m) were found to have relatively higher heavy metal levels in household dust.

Removal of Arsenite by Nanocrystalline Mackinawite(FeS)-Coated Alumina (나노크기 매킨나와이트로 코팅된 알루미나에 의한 아비산염의 제거)

  • Lee, Seungyeol;Kang, Jung Chun;Park, Minji;Yang, Kyounghee;Jeong, Hoon Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.101-110
    • /
    • 2013
  • Due to the large specific surface area and great reactivity toward environmental contaminants, nanocrystalline mackinawite (FeS) has been widely applied for the remediation of contaminated groundwater and soil. Furthermore, nanocrystalline FeS is rather thermodynamically stable against anoxic corrosion, and its reactivity can be regenerated continuously by the activity of sulfate-reducing bacteria. However, nanocrystalline mackinawite is prone to either spread out along the groundwater flow or cause pore clogging in aquifers by particle aggregation. Accordingly, this mineral should be modified for the application of permeable reactive barriers (PRBs). In this study, coating methods were investigated by which mackinawite nanoparticles were deposited on the surface of alumina or activated alumina. The amount of FeS coating was found to significantly vary with pH, with the highest amount occurring at pH ~6.9 for both minerals. At this pH, the surfaces of mackinawite and alumina (or activated alumina) were oppositely charged, with the resultant electrostatic attraction making the coating highly effective. At this pH, the coating amounts by alumina and activated alumina were 0.038 and 0.114 $mmol{\cdot}FeS/g$, respectively. Under anoxic conditions, arsenite sorption experiments were conducted with uncoated alumina, uncoated activated alumina, and both minerals coated with FeS at the optimal pH for comparison of their reactivity. Uncoated activated alumina showed the higher arsenite removal compared to uncoated alumina. Notably, the arsenite sorption capacity of activated alumina was little changed by the coating with FeS. This might be attributed to the abundance of highly reactive hydroxyl functional groups (${\equiv}$AlOH) on the surface of activated alumina, making the arsenite sorption by the coated FeS unnoticeable. In contrast, the arsenite sorption capacity of alumina was found to increase substantially by the FeS coating. This was due to the consumption of the surface hydroxyl functional groups on the alumina surface and the subsequent occurrence of As(III) sorption by the coated FeS. Alumina, on the surface area basis, has about 8 times higher FeS coating amount and higher As(III) sorption capacity than silica. This study indicates that alumina is a better candidate than silica for the coating of nanocrystalline mackinawite.

Characteristic Assessment of Heavy Metals in Dusts Collected by the Air Filtration System at Subway Stations in Daegu, Korea (대구지역 지하철역사 공기여과필터 포집먼지에 함유된 중금속성분의 특성평가)

  • Do, Hwa-Seok;Song, Hee-Bong;Shin, Dong-Chan;Kwak, Jin-Hee;Lee, Myoung-Sook;Yoon, Ho-Suk;Kang, Hye-Jung;Phee, Young-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • Samples of subway dust were collected by the air filter system of 30 subway stations on Daegu subway line 1 in January 2008. Samples were sieved below 100 ${\mu}m$, and 14 elements were analyzed using ICP after acid extraction. Results obtained from the source assessment of trace elements using enrichment factor showed that Ca, Fe, K, Mg, Mn, Na, V were influenced by natural sources such as weathered rock and resuspended soil, while Cd, Cr, Cu, Ni, Pb and Zn were influenced by anthropogenic sources such as fuel combustion and waste incineration. Concentrations were remarkably higher in components from natural sources than in components from anthropogenic sources. Anthropogenic sources were significantly affected by indoor dusts than outdoor dusts. Results of pollution indices of heavy metals indicated that indoor dusts were more contaminated with heavy metal ions than outdoor dusts. The correlation analysis among trace elements indicated that components were much correlated in the order of natural sources-anthropogenic sources, anthropogenic sources-anthropogenic sources, natural sources-natural sources in both indoor and outdoor dusts. Trace element components of outdoor dusts were largely correlated than those of indoor dusts. In addition, indoor dusts were significantly affected by outdoor dusts rather than depth from the surface or the average daily number of subway passengers.

Effect of Cobalt (II) on the Fertilization and Embryo Development of the Sea Urchin ($Hemicentrotus$ $pulcherrimus$) (코발트(II)가 말똥성게($Hemicentrotus$ $pulcherrimus$)의 수정 및 배아 발생에 미치는 영향)

  • Hwang, Un-Ki;Ryu, Hyang-Mi;Choi, Yong-Hwan;Lee, Seung-Min;Kang, Han-Seung
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.4
    • /
    • pp.251-257
    • /
    • 2011
  • Cobalt is a naturally occurring element found in rocks, soil, water and/or is among the harmful pollutants as generated by industrialized. In the environment, cobalt has two oxidation states, cobalt (II) (Co (II)) and cobalt (III) (Co (III)). If coastal water is contaminated by cobalt, it through the food chain can have an impact on marine ecosystems. Therefore, we examined the gametotoxic and embryotoxic effects of Co (II) at various concentrations (10, 100, 500, 1000, 2500 ppb) in the sea urchin $Hemicentrotus$ $pulcherrimus$. Spawning was induced by injecting 1 mL of 0.5 M KCl into coelomic cavity. Males released white or cream-colored sperms and females released yellow or orange-colored eggs. Experiment was begun within 30 min the collection of both gametes. The fertilization and embryo development rates test were performed for 10 min and 64 h after fertilization, respectively. The fertilization rates in the control condition (not including Co (II)) and experimental group were not significantly changed. The embryo development rates in the control condition were greater than 90% and were significantly decreased with concentration dependent manner. The normal embryogenesis rate was significantly inhibited in exposed to cobalt (II) ($EC_{50}$=71.84 ppb, 95% Cl=16.71-203.36 ppb). The NOEC and LOEC of normal embryogenesis rate were <10 ppb and 10 ppb, respectively. These results suggest that the early embryo stages of $H.$ $pulcherrimus$ have toxic effect at greater than 10 ppb of Co (II) concentration.

Geochemical Studies of Geothermal Waters in Yusung Geotheraml Area (유성 지역 지열수의 지구화학적 특성 연구)

  • 김건영;고용권;김천수;배대석;박맹언
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.32-46
    • /
    • 2000
  • Hydrogeochemical and isotope ($\delta$$^{18}$ O, $\delta$D, $^3$H, $\delta$$^{13}$ C, $\delta$$^{34}$ S, $^{87}$ Sr/$^{86}$ Sr) studies of various kinds of waters (thermal groundwater, deep groundwater, shallow groundwater, and surface water) from the Yusung area were carried out in order to elucidate their geochemical characteristics such as distribution and behaviour of major/minor elements, geochemical evolution, reservoir temperature, and water-rock interaction of the thermal groundwater. Thermal groundwater of the Yusung area is formed by heating at depth during deep circlulation of groundwater and is evolved into Na-HCO$_3$type water by hydrolysis of silicate minerals with calcite precipitation and mixing of shallow groundwater. High NO$_3$contents of many thermal and deep groundwater samples indicate that the thermal or deep groundwaters were mixed with contaminated shallow groundwater and/or surface water. $\delta$$^{18}$ O and $\delta$D are plotted around the global meteoric water line and there are no differences between the various types of water. Tritium contents of shallow groundwater, deep groundwater and thermal groundwater are quite different, but show that the thermal groundwater was mixed with surface water and/or shallow groundwater during uprising to surface after being heated at depths. $\delta$$^{13}$ C values of all water samples are very low (average -16.3$\textperthousand$%o). Such low $\delta$$^{13}$ C values indicate that the source of carbon is organic material and all waters from the Yusung area were affected by $CO_2$ gas originated from near surface environment. $\delta$$^{34}$ S values show mixing properties of thermal groundwater and shallow groundwater. Based on $^{87}$ Sr/$^{86}$ Sr values, Ca is thought to be originated from the dissolution of plagioclase. Reservoir temperature at depth is estimated to be 100~1$25^{\circ}C$ by calculation of equilibrium method of multiphase system. Therefore, the thermal groundwaters from the Yusung area were formed by heating at depths and evolved by water-rock interaction and mixing with shallow groundwater.

  • PDF

Deterioration Diagnosis and Source Area of Rock Properties at the West Stone Pagoda, Gameunsaji Temple Site, Korea (감은사지 서탑의 풍화훼손도 진단 및 석재의 산지추정)

  • Lee Chan Hee;Lee Myeong Seong;Suh Mancheol;Choi Seok-Won;Kim Man Gap
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.569-583
    • /
    • 2004
  • The rock properties of the West pagoda in the Gameunsaji temple site are composed mainly of dark grey porphyritic granodiorite with medium grained equigranular texture and developed with small numerous dioritic xenoliths. These xenoliths occurred with small holes due to different weathering processes. As a weathering results, the rock properties of this pagoda occur wholly softened to physical hardness because of a complex result of petrological, meteorological and biological causes. Southeastern part of the pagoda deteriorated seriously that the surface of rock blocks showed partially exfoliations, fractures, open cavities in course of granular decomposition of minerals, sea water spray and crystallization of salt from the eastern coast. The Joint between blocks has small or large fracture cross each other, contaminated and corrupted for inserting with concrete, cement mortar, rock fragments and iron plates, and partially accelerated coloration and fractures. There are serious contamination materials of algae, fungus, lichen and bryophytes on the margin and the surface on the roof stone of the pagoda, so it'll require conservation treatment biochemically for releasing vegetation inhabiting on the surface and the discontinuous plane of the blocks because of adding the weathering activity of stones and growing weeds naturally by soil processing on the fissure zone. Consisting rock for the conservation and restoration of the pagoda would be careful choice of new rock properties and epoxy to reinforce for the deterioration surfaces. For the attenuation of secondary contamination and surface humidity, the possible conservation treatments are needed.

Microbiological Hazard Analysis on Perilla Leaf Farms at the Harvesting Stage for the Application of the Good Agricultural Practices(GAP) (깻잎의 농산물우수관리제도(GAP) 적용을 위한 수확단계에서 미생물학적 위해요소 분석)

  • Kwon, Woo-Hyun;Lee, Won-Gyeong;Song, Jeong-Eon;Kim, Kyeong-Yeol;Shim, Won-Bo;Yoon, Yo-Han;Kim, Yun-Shik;Chung, Duck-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.3
    • /
    • pp.295-300
    • /
    • 2012
  • The purpose of this study was to analyze microbiological hazards for plants, cultivation environments and personal hygiene of perilla leaf farms at the harvesting stage. Samples were collected from three perilla leaf farms(A, B, C) located in Gyeongnam, Korea and tested for sanitary indications, fungi and pathogenic bacteria(Escherichia coli O157:H7, Listeria monocytogens, Salmonella spp., Staphylococcus aureus and Bacillus cereus). As a result, total bacteria and coliform in perilla leaf were detected at the levels of 4.4~5.2 and 3.4~4.3 log CFU/g, respectively, but E. coli was not detected in all samples. Among the pathogenic bacteria, B. cereus(perilla leaf: 2.0~2.4 log CFU/g, stem: 1.4~2.1 log CFU/g, water: 0.7 log CFU/ml, soil: 4.2~5.0 log CFU/g, hands: 3.0 log CFU/ hand, gloves: 2.1~2.4 log CFU/100 $cm^2$, glothes: 1.5~2.8 log CFU/100 $cm^2$) and S. aureus(3.4 log CFU/hand) were detected in all samples and worker's hand from farm A, respectively. However, other pathogenic bacteria were not detected. This study demonstrates that perilla leaf at the harvesting stage was significantly contaminated with microbial hazards.