• 제목/요약/키워드: As contaminated soil

검색결과 1,165건 처리시간 0.025초

유류오염토양 처리를 위한 마이크로나노버블 토양세척에 관한 연구 (A Study on the Treatment of Oil Contaminated Soils with Micro-nano Bubbles Soil Washing System)

  • 최호은;정진희;한영립;김대용;정병길;최영익
    • 한국환경과학회지
    • /
    • 제20권10호
    • /
    • pp.1329-1336
    • /
    • 2011
  • The objectives of this study are to examine the processing of oils contamination soil by means of using a micronano-bubble soil washing system, to investigate the various factors such as washing periods, the amount of micro-nano bubbles generated depending on the quantity of acid injection and quantity of air injection, to examine the features involved in the elimination of total petroleum hydrocarbons (TPHs) contained in the soil, and thus to evaluate the possibility of practical application on the field for the economic feasibility. The oils contaminated soil used in this study was collected from the 0~15 cm surface layer of an automobile junkyard located in U City. The collected soil was air-dried for 24 hours, and then the large particles and other substances contained in the soil were eliminated and filtered through sieve No.10 (2 mm) to secure consistency in the samples. The TPH concentration of the contaminated soil was found to be 4,914~5,998 mg/kg. The micronano-bubble soil washing system consists of the reactor, the flow equalization tank, the micronano- bubble generator, the pump and the strainer, and was manufactured with stainless material for withstanding acidic phase. When the injected air flow rate was fixed at 2 L/min, for each hydrogen peroxide concentrations (5, 10, 15%) the removal percents for TPH within the contaminated soil with retention times of 30 minutes were respectively identified as 4,931 mg/kg (18.9%), 4,678 mg/kg (18.9%) and, 4,513 mg/kg (17.7%). And when the injected air flow rate was fixed at 2 L/min, for each hydrogen peroxide concentrations (5, 10, 15%) the removal percents for TPH within the contaminated soil with retention times of 120 minutes were respectively identified as4,256 mg/kg (22.3%), 4,621 mg/kg (19.7%) and 4,268 mg/kg (25.9%).

The Allelopathic Effects of Lantana camara on Seed Germination and Growth of Selected Bioassay Species

  • Senarathne, S.H.S.;Fernando, R.D.V.;Sangakkara, U.R.
    • 한국잡초학회지
    • /
    • 제31권3호
    • /
    • pp.271-278
    • /
    • 2011
  • The allelopathic effects of Lantana camara L. (Family:Verbenaceae) on germination and seedling establishment of some agricultural crops and weed species have been identified. Aqueous extracts of dry leaves and contaminated soil where L. camara is grown were used to verify allelopathic effect on seed germination of five bioassay species; Raphanus sativas, Capsicum annum, Lycopersicum esculantem, Crotalaria juncia and Chromoleana odorata. Fifty seeds from each bioassay species were placed in a petri dish containing leaf extracts or contaminated soil, and seed germination were examined after 3 days. The plant house experiments were carried out to evaluate the impact of L. camara contaminated soil and leaf debris using L. esculantem as the indicator plant. Seed germination of L. esculentem, C. junica and Capsicum annum was significantly inhibited by L. camara contaminated soil. However, the degree of inhibition varied among the bioassay species. The aqueous extract of dry leaves of L. camara was highly phytotoxic and it significantly reduced seed germination of all bioassay species. There was a decline in plant height, leaf area and shoot dry weight of tomato only in early growth stages when grown in L. camara contaminated soils. However, incorporation of leaf debris into soil affected the vegetative growth of tomato in early stages when the leaf debris concentration was increased. Growth recovered at the latter part of the life cycle. On the basis of these results it can be concluded that the allelochemicals in L. camara contaminated soils are harmful to the seed germination of crop species. The adverse effect was present only during the early growth stages and it did not suppress the latter part of the plant growth. These responses are attributed to allelopathic effects which need confirmation under field conditions.

토양세척법에 의한 클레이사격장 납 오염토양의 정화에 관한 연구 (A Study on the Remediation of Lead Contaminated Soil in a Clay Shooting Range with Soil Washing)

  • 이인화;설명수
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권5호
    • /
    • pp.23-31
    • /
    • 2010
  • For an efficient remediation of Pb-contaminated soil (S-1) in a clay shooting range, a soil washing test was performed with mineral acid, organic acid, chelating agent, and chloride. The Pb extraction efficiency of extractant (0.1 M) used in the washing test showed the order of HCl > $Na_2$-EDTA > NTA > DTPA > citric acid > malic acid > succinic acid > acetic acid > $CaCl_2$ > $MgCl_2$, for S-1 soil. As compared to initial Pb concentration, extraction efficiency by the concentration of extractant was 93.35%, 80.80%, 73.92%, and 24.57% in S-1 soil for HCl (0.5 M, pH 1.10), $Na_2$-EDTA (0.01 M, pH 3.99), citric acid (0.5 M, pH 1.27), and $MgCl_2$ (0.1 M, pH 8.82), respectively. S-1 soil had 56.83% of residue form and 43.17% of non-residue form (18.04% of exchangeable form), respectively. Although the concentrations of these fractions sharply decreased after HCl washing, since the exchangeable forms with relatively large mobility are still distributed as high as 18.78% (to Pb total content in residual soils) in S-1 soil, it is necessary to devise a proper management plan for residual soils after soil washing application.

디젤로 오염된 군부대 토양에 대하여 토착미생물 4종을 이용한 생분해법의 TPH 제거 효율 규명 (TPH Removal of the Biodegradation Process Using 4 Indigenous Microorganisms for the Diesel Contaminated Soil in a Military Camp)

  • 박민호;이민희
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권3호
    • /
    • pp.49-58
    • /
    • 2012
  • Batch experiments using indigenous and commercialized adventive microorganisms were performed to investigate the feasibility of the biodegradation process for the diesel contaminated soil, which was taken in US Military Camp 'Hialeah', Korea. TPH concentration of the soil was determined as 3,819 mg/kg. Four indigenous microorganisms having high TPH degradation activity were isolated from the soil and by 16S rRNA gene sequence analysis, they were identified as Arthrobacter sp., Burkholderia sp., Cupriavidus sp. and Bacillus sp.. Two kinds of commercialized solutions cultured with adventive microorganisms were also used for the experiments. Various biodegradation conditions such as the amount of microorganism, water content and the temperature were applied to decide the optimal bioavailability condition in the experiments. In the case of soils without additional microorganisms (on the natural attenuation condition), 35% of initial TPH was removed from the soil by inhabitant microorganisms in soil for 30 days. When the commercialized microorganism cultured solutions were added into the soil, their average TPH removal efficiencies were 64%, and 54%, respectively, which were higher than that without additional microorganisms. When indigenous microorganisms isolated from the contaminated soil were added into the soil, TPH removal efficiency increased up to 95% (for Bacillus sp.). According to the calculation of the average biodegradation rates for Bacillus sp., the remediation goal (87% of the removal efficiency: 500 mg/kg) for the soil would reach within 24 days. Results suggested that TPH removal efficiency of biodegradation by injecting indigenous microorganisms is better than those by injecting commercialized adventive microorganisms and only by using the natural attenuation.

인산염을 이용한 납오염 토양 고정화 반응의 가속화

  • 이의상;이상봉;이인원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.201-204
    • /
    • 2004
  • Immobilization is seen as a promising technology for lead remediation. In a laboratory experiment, immobilization of lead with soluble P was tested as a function of reaction time and P concentration. The P treated with an acidic solution to enhance heavy metal immobilization was worked into the soil, and within 7 days, lead was stabilized. Different molar ratios of soluble phosphates (super-phosphate and KH$_2$PO$_4$) would be considerably effective to accelerate the formation of highly insoluble minerals due to the lack of leachable Pb in the contaminated soil. Although it was demonstrated that the addition of soluble phosphates with an acidic solution significantly reduced available lead in soil up to over 95%, remaining phosphorus in soil matrix might cause a possible groundwater eutrophication in the near future.

  • PDF

토양의 종류에 따른 초음파토양세척의 투수특성 분석

  • 정하익;송봉준;이용수;유준;강동우
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.258-261
    • /
    • 2004
  • In this study, the combined electrokinetic and ultrasonic remediation technique onto simple soil flushing was studied for the enhancement of water and liquid flows and the removal of contaminants in contaminated soils. The ultrasonic technique has been used to increase liquid flow and remove pollutants in contaminated soil. The laboratory soil flushing tests combined electrokinetic and ultrasonic technique were conducted using specially designed and fabricated devices to determine the effect of these both techniques. A series of laboratory permeability experiments involving the simple, electrokinetic, ultrasonic, and electrokinetic & ultrasonic flushing test were carried out. A soil admixed with sand and kaolin was used as a test specimen, and Pb and ethylene glycol were used as contaminants. An increase in out flow, permeability and contaminant removal rate was observed in electrokinetic and ultrasonic flushing tests.

  • PDF

황화영가철 기반의 과황산 고도산화공정을 이용한 페놀 오염토양 처리 (Treatment of Phenol Contaminated Soil Using Sulfidated Zero-Valent Iron as a Persulfate Activator for Advanced Oxidation Process)

  • 정혁성;응우옌 쿠엔 비엔;최재영;황인성
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제28권1호
    • /
    • pp.15-24
    • /
    • 2023
  • A persulfate(PS)/sulfidated microscale zero-valent iron(S-mZVI) system was tested for treating a soil contaminated with phenol. Sulfidation of bare mZVI was conducted using a mechanochemical process utilizing a ball mill in order to improve persulfate activation capacity and stability of unmodified mZVI. The synthesized S-mZVI performed markedly better than the bare mZVI in activating PS. The optimum molar ratio of sulfur to mZVI was around 0.12. In the soil slurry experiments, a very rapid and complete removal of phenol was observed at the optimum molar ratios of PS to S-mZVI of 2:1 and PS to phenol of 16:1. The phenol removal efficiencies decreased as the water content of the slurries decreased. This was believed to be due to increased soil oxidant demand as the amount of soil was increased as relative to the water content. To evaluate the field applicability of the process, slurry experiments adopting high soil contents were carried out that simulated in-situ soil mixing conditions. These experiments resulted in substantially compromised degradation efficiencies of 54.3% and 43.8% within 4 hours. The current study generally shows that the PS/S-mZVI process has a potential to be developed into a remediation technology for soils contaminated with organics.

ENHANCED BIOREMEDIATION AND MODIFIED BACTERIAL COMMUNITY STRUCTURE BY BARNYARD GRASS IN DIESEL-CONTAMINATED SOIL

  • Kim, Jai-Soo;Min, Kyung-Ah;Cho, Kyung-Suk;Lee, In-Sook
    • Environmental Engineering Research
    • /
    • 제12권2호
    • /
    • pp.37-45
    • /
    • 2007
  • Phytoremediation has been used effectively for the biodegradation of oil-based contaminants, including diesel, by the stimulation of soil microbes near plant roots (rhizosphere). However, the technique has rarely been assessed for itsinfluence on soil microbial properties such as population, community structure, and diversity. In this study, the removal efficiency and characteristics of rhizobacteria for phytoremediation of diesel-contaminated soils were assessed using barnyard grass (Echinochloa crusgalli). The concentration of spiked diesel for treatments was around $6000\;mg\;kg^{-1}$. Diesel removal efficiencies reached 100% in rhizosphere soils, 76% in planted bulk soils, and 62% in unplanted bulk soils after 3weeks stabilization and 2 months growth(control, no microbial activity: 32%). The highest populations of culturable soil bacteria ($5.89{\times}10^8$ per g soil) and culturable hydrocarbon-degraders($5.65{\times}10^6$ per g soil) were found in diesel-contaminated rhizosphere soil, also yielding the highest microbial dehydrogenase. This suggests that the populations of soil bacteria, including hydrocarbon-degraders, were significantly increased by a synergistic rhizosphere + diesel effect. The diesel treatment alone resulted in negative population growth. In addition, we investigated the bacterial community structures of each soil sample based on DGGE (Denaturing Gel Gradient Electrophoresis) band patterns. Bacterial community structure was most influenced by the presence of diesel contamination (76.92% dissimilarity to the control) and by a diesel + rhizosphere treatment (65.62% dissimilarity), and least influenced by the rhizosphere treatment alone (48.15% dissimilarity). Based on the number of distinct DGGE bands, the bacterial diversity decreased with diesel treatment, but kept constant in the rhizosphere treatment. The rhizosphere thus positively influenced bacterial population density in diesel-contaminated soil, resulting in high removal efficiency of diesel.

Evaluation of Different Organic Materials in Reducing Cadmium Phytoavailability of Radish Grown in Contaminated Soil

  • Kim, Yong Gyun;Park, Hyean Cheal;Kim, Keun Ki;Kim, Sung Un;Hong, Chang Oh
    • 한국토양비료학회지
    • /
    • 제50권1호
    • /
    • pp.12-20
    • /
    • 2017
  • Various types of organic materials could affect differently immobilization of cadmium (Cd) and its uptake by plant grown in soil. Therefore, this study was conducted to evaluate effect of different organic materials in reducing Cd phytoextractability in contaminated arable soil. To do this, rice straw and composted manure were selected as organic materials and applied at the rate of 0, 15, 30, and $45Mg\;ha^{-1}$ in Cd contaminated arable soil with $6.5mg\;kg^{-1}$ of total Cd. Radish (Raphanus sativa L.) was seeded and grown for 50 days to evaluate Cd phytoavailability with different organic materials. Composted manure was more effective to decrease $1M\;NH_4OAc$ extractable Cd concentration and increase pH of soil than rice straw. $One\;M\;NH_4OAc$ extractable Cd concentration significantly decreased with increasing application rate of composted manure. Tendency of Cd uptake by radish plant with application of different organic materials was similar to that of $1M\;NH_4OAc$ extractable Cd concentration and soil pH. Changes of soil pH with application of straw and composted might be one of factors to determine extractability and phytoavailability of Cd in this study. Radish yield significantly increased with up to $45Mg\;ha^{-1}$ of composted manure application but did not with straw application. In the view point of Cd phytoextractability and plant productivity, it is recommended to apply composted manure rather than straw in Cd contaminated arable soil.

오염지반 복원공법분석 및 고찰 (The restoration-method of contaminated ground process and investigation)

  • 노시원;윤준영;이영생
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.615-620
    • /
    • 2010
  • In this paper, conventional biological treatment methods to compensate for the shortcomings bio-Ceramic -technology to develop fusion as a preliminary step of the analysis and review process to restore contaminated soil and BTEX (benzene, toluene, ethylbenzene, xylene) contaminated by Soil physical and mechanical properties were analyzed. As a result, pollution levels and other contaminants by supporting the sample tests carried out by mechanical properties testing, and the difference between unpolluted soil were compared.

  • PDF