• Title/Summary/Keyword: As chemical form

Search Result 1,617, Processing Time 0.024 seconds

Synthesis of Platinum Nanostructures Using Seeding Method

  • Han, Sang-Beom;Song, You-Jung;Lee, Jong-Min;Kim, Jy-Yeon;Kim, Do-Hyung;Park, Kyung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2362-2364
    • /
    • 2009
  • We report Pt hexapod nanoparticles with $6.4\;{\sim}\;9.7$ nm in size by a polyol process in the presence of PVP as a stabilizer and additive as a kinetic controller. The structure and morphology of Pt nanostructures are confirmed by field-emission transmission electron microscopy. The morphological control over platinum nanoparticles is achieved by varying the amount of seeds in the polyol process, where platinum precursor is reduced by ethylene glycol to form Pt nanoparticle at $150\;{^{\circ}C}$. As volume ratio between precursor-solution and seed-solution is increased from 10 to 50, the shape of Pt nanostructures is evolved from small seeds to tripod and hexapod. In addition, the size-controlled platinum hexapod nanostructures are successfully obtained using seeding method.

Photocatalytic Activities of Titania Deposited Beads by FB-CVD as Operation Variables (유동층 화학기상증착(FB-CVD)으로 제조한 광촉매 박막증착 비드의 조업변수에 따른 반응성)

  • Lim, Nam-Yun;Lee, Seung Yong;Park, Jaehyeon;Kwak, Jini;Park, Hai Woong
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.300-306
    • /
    • 2006
  • Photocatalyst deposited beads were prepared by fluidized bed chemical vapor deposition (FB-CVD) under various operating conditions of substrates, bed temperature, pressure, and oxygen concentration. Photocatalytic degradation of acetaldehyde was carried out to determine the optimum operating condition of prepared photocatalysts. They were characterized by using FE-SEM, XRD, and XPS. From the FE-SEM photographs, it was found that the surfaces of titania-coated beads were covered with crystal form, particle form, and slick form of titania on alumina, silica-gel, and glass beads, respectively. From the result of photocatalytic degradation of acetaldehyde, it was found that prepared titania/ alumina beads at $600^{\circ}C$, 5 torr showed superior performance to others, and oxygen flow rate has no significant effect.

Emerging membrane technologies developed in NUS for water reuse and desalination applications: membrane distillation and forward osmosis

  • Teoh, May May;Wang, Kai Yu;Bonyadi, Sina;Yang, Qian;Chung, Tai-Shung
    • Membrane and Water Treatment
    • /
    • v.2 no.1
    • /
    • pp.1-24
    • /
    • 2011
  • The deficiency of clean water is a major global concern because all the living creatures rely on the drinkable water for survival. On top of this, abundant of clean water supply is also necessary for household, metropolitan inhabitants, industry, and agriculture. Among many purification processes, advances in low-energy membrane separation technology appear to be the most effective solution for water crisis because membranes have been widely recognized as one of the most direct and feasible approaches for clean water production. The aim of this article is to give an overview of (1) two new emerging membrane technologies for water reuse and desalination by forward osmosis (FO) and membrane distillation (MD), and (2) the molecular engineering and development of highly permeable hollow fiber membranes, with polyvinylidene fluoride (PVDF) and polybenzimidazole (PBI) as the main focuses for the aforementioned applications in National University of Singapore (NUS). This article presents the main results of membrane module design, separation performance, membrane characteristics, chemical modification and spinning conditions to produce novel hollow fiber membranes for FO and MD applications. As two potential solutions, MD and FO may be synergistically combined to form a hybrid system as a sustainable alternative technology for fresh water production.

Effect of Crystal Form on Bioavailability (결정형이 생체이용률에 미치는 영향)

  • Sohn, Young-Taek
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.443-452
    • /
    • 2004
  • Habit is the description of the outer appearance of a crystal. If the environment of a growing crystal affects its external shape without changing its internal structure, a different habit results. Crystal habit and the internal structure of a drug can affect bulk and physicochemical properties, which range from flowability to chemical stability. A polymorph is a solid crystalline phase of a given compound resulting from the possibility of at least two different arrangements of the molecules of that compound in the solid state. Chemical stability and solubility changes due to polymorphism can have an impact on a drug's bioavailability and its development program. During crystallization from a solution, crystals separating may consist of a pure component or be a molecular compound. Solvates are molecular complexes that have incorporated the crystallizing solvent molecule in their lattice. When the solvent incorporated in the solvate is water, it is called a hydrate. To distinguish solvates from polymorphs, which are not molecular compounds, the term pseudopolymorph is used. Identification of possible hydrate compounds is important since their aqueous solubilities can be significantly less than their anhydrous forms. Conversion of an anhydrous compound to a hydrate within the dosage form may reduce the dissolution rate and extent of drug absorption. An amorphous solid may be treated as a supercooled liquid in which the arrangement of molecules is random. Amorphous solids lack the three-dimensional long-range order found in crystalline solids. Since amorphous forms are usually of higher thermodynamic energy than corresponding crystalline forms, solubilities as well as dissolution rates are generally greater. A study on crystal form includes characterization of (l)crystal habit, (2)polymorphism, (3)pseudopolymorphism, (4)amorphous solid.

Graphitic Mesostructured Carbon from an Aliphatic Hydrocarbon Precursor

  • Kim, Chy-Hyung;Oh, Teresa
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1978-1980
    • /
    • 2009
  • A mesostructured form of carbon was fabricated from a template of mesostructured silica by using pentane, an aliphatic hydrocarbon precursor. To synthesize the mesostructured silica, a buffered (pH of 6.5) mixture of nonionic Pluronic P123 surfactant, sodium silicate, and acetic acid were used. The impregnated silica with Fe$(CO)_5$ (wt 5%) and pentane was placed in a quartz tube, treated with pentane vapor at 800 ${^{\circ}C}$ for two hours to synthesize the mesostructured carbon. The XRD patterns of the carbon replica in the low/wide angle regions, its TEM images, and nitrogen adsorption-desorption isotherm revealed that the long-range framework order of mesostructure with the pore size centered on 2.8 nm was maintained to some extent mainly due to some portions of mesophase carbon that work as a support to fix the hexagonal frameworks by anchoring on the pore surface with an improved graphitic character. The dc conductivity of the mesostructured carbon in pressed powder form at 6.0 MPa was 2.08 S/cm.

Refolding of Fusion Ferritin by Gel Filtration Chromatography(GFC)

  • Kim, Hyung-Won;Kim, In-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.500-504
    • /
    • 2005
  • Fusion ferritin (heavy chain ferritin, $F_H+$ light chain ferritin, $F_L$), an iron-binding protein, was primarily purified from recombinant Escherichia coli by two-step sonications with urea [1]. Unfolded ferritin was refolded by gel filtration chromatography (GFC) with refolding enhancer, where 50 mM Na-phosphate (pH 7.4) buffer containing additives such as Tween 20, PEG, and L-arginine was used. Ferritin is a multimeric protein that contains approximately 20 monomeric units for full activity. Fusion ferritin was expressed in the form of inclusion bodies (IBs). The IBs were initially solubilized in 4 M urea denaturant. The refolding process was then performed by decreasing the urea concentration on the GFC column to form protein multimers. The combination of the buffer-exchange effect of GFC and the refolding enhancers in refolding buffer resulted in an efficient route for producing properly folded fusion ferritin.

Fluorescence Quenching of Green Fluorescent Protein during Denaturation by Guanidine

  • Jung, Ki-Chul;Park, Jae-Bok;Maeng, Pil-Jae;Kim, Hack-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.413-417
    • /
    • 2005
  • Fluorescence of green fluorescent protein mutant, 2-5 GFP is observed during denaturation by guanidine. The fluorescence intensity decreases exponentially but the fluorescence lifetime does not change during denaturation. The fluorescence lifetime of the denatured protein is shorter than that of native form. As the protein structure is modified by guanidine, solvent water molecules penetrate into the protein barrel and protonate the chromophore to quench fluorescence. Most fluorescence quenchers do not affect the fluorescence of native form but accelerate the fluorescence intensity decay during denaturation. Based on the observations, a simple model is suggested for the structural change of the protein molecule during denaturation.

Cystal Boundaries in Igneous Roks: Genetic Classification and Geometric Features (화성암에서의 결정경계: 성인적 분류와 기하학적 특성)

  • Park, Youngdo
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.168-177
    • /
    • 1995
  • Crystal boundaries in igneous rocks are genetically classified in order to predict the geometric patterns of the boundaries which may aid deciphering the textural code in igneous rocks. Crystal boundaries may be formed by two end-member processes;(1) mechanical and (2) chemical removal of interstitial melt. Mechanical removal of the melt will form displacement impingement boundaries, while chemical removal of the melt will form growth impingement boundaries. The positions of boundaries relative to the material points may be affected by secondary processes such as (1) migration and (2) dissolution. The geometric features of crystal boundaries, suggested in this study, may be useful when studying igneous textures and processes, although it may be impossible to determine the suggested features with the analytical techniques currently avilable.

  • PDF

Correlation Equation for Retention Factor and Resolution of Ibuprofen in SFC

  • Han, Soon-Koo;Jin, Yin-Zhe;Row, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1807-1811
    • /
    • 2004
  • Supercritical fluid chromatography (SFC) was considered for separating racemic ibuprofen. The chromatographic column (3.9 ${\times}$ 150 mm) was packed with Kromasil$^{\circledR}$ CHI-TBB, and the mobile phase was supercritical carbon dioxide with modifier of IPA. The experimental variables were the content of IPA, and temperature and pressure of supercritical mobile phase. To determine the separation condition, the empirical equation of retention factor and resolution was proposed. In the case of retention factor, the empirical equation was in the form, $k\;=\;a{\rho}\;+b/F\;+\;c\;({\rho}/F)\;+\;d$. The empirical equation for resolution was proposed as a linear form, $R\;=\;a{\rho}\;+\;bF\;+\;c$.

Theoretical Studies on the Gas-Phase Nucleophilic Aromatic Substitution Reaction

  • Lee, Ik-Choon;Park, Hyoung-Yeon;Bon-Su Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.6
    • /
    • pp.658-661
    • /
    • 1991
  • The gas-phase nucleophilic substitution reaction of pentafluoroanisole with $OH^-$ and ${NH_2}^-$ nucleophiles have been studied theoretically using the AM1 method. Three reaction channels, $S_N2$, IPSO and $S_NAr$ (scheme 1), are all very exothermic so that all are accessible despite the varying central energy barriers which are much lower than the reactants level. In the IPSO and $S_NAr$ channels, the reactants form directly a stable ,${\sigma}$-anion complex which proceeds to form a proton transfer complex via a transition barrier corresponding to a loose ${\pi}$-type complex with the F-(or ${OCH_3}^-$) leaving group. Due to a greater number of probable reaction sites available for $S_NAr$ compared to the other two processes, the $S_NAr$ channel is favored as experimentally observed.