• Title/Summary/Keyword: As₄O/sub 6/

Search Result 1,793, Processing Time 0.03 seconds

Effect of Spray Angle the on Microstructure and Mechanical Properties of Y2O3 Coating Layer Manufactured by Atmospheric Plasma Spray Process (Atmospheric plasma spray 공정으로 제조된 Y2O3 코팅층의 미세조직 및 기계적 특성에 미치는 분사 각도의 영향)

  • Hwang, Yu-Jin;Kim, Kyoung-Wook;Lee, Ho-Young;Kwon, Sik-Chol;Lee, Kee Ahn
    • Journal of Powder Materials
    • /
    • v.28 no.4
    • /
    • pp.310-316
    • /
    • 2021
  • The effects of different spray angles (90°, 85°, 80°) on the microstructure and mechanical properties of a Y2O3 coating layer prepared using the atmospheric plasma spray (APS) process were studied. The powders employed in this study had a spherical shape and included a cubic Y2O3 phase. The APS coating layer exhibited the same phase as the powders. Thickness values of the coating layers were 90°: 203.7 ± 8.5 ㎛, 85°: 196.4 ± 9.6 ㎛, and 80°: 208.8 ± 10.2 ㎛, and it was confirmed that the effect of the spray angle on the thickness was insignificant. The porosities were measured as 90°: 3.9 ± 0.85%, 85°: 11.4 ± 2.3%, and 80°: 12.7 ± 0.5%, and the surface roughness values were 90°: 5.9 ± 0.3 ㎛, 85°: 8.5 ± 1.1 ㎛, and 80°: 8.5 ± 0.4 ㎛. As the spray angle decreased, the porosity increased, but the surface roughness did not show a significant difference. Vickers hardness measurements revealed values of 90°: 369.2 ± 22.3, 85°: 315.8 ± 31.4, and 80°: 267.1 ± 45.1 HV. It was found that under the condition of a 90° angle with the lowest porosity exhibited the best hardness value. Based on the aforementioned results, an improved method for the APS Y2O3 coating layer was also discussed.

The Electrical Properties of Mo-doped BiNbO4 Ceramic Thick Film Monopole Antenna (Mo을 치환한 BiNbO4 세라믹 후막 모노폴 안테나의 전기적 특성)

  • 서원경;허대영;최문석;안성훈;정천석;이재신
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.987-993
    • /
    • 2003
  • We fabricated thick film monopole antennas using Mo-doped BiNbO$_4$ ceramics and investigated their electrical properties as a function of the Mo-doping concentration. Compared with undoped BiNbO$_4$ ceramics, 10 at.% Mo-doping improved microwave dielectric properties of ceramics by increased sintered density as well as decreased space charge density. Further increase in the Mo-doping concentration caused formation of Bi$_2$MoO$_{6}$ phases, resulting in deterioration of the microwave characteristics. The gain and bandwidth of the ceramic monopole antenna were also greatly affected by the Mo-doping concentration. When Mo-doping concentration was 10 at.%, highest gain of -0.7dBi with lowest bandwidth of 30% at 2.3GHz was obtained.

Photolysis Improvement of Toluene in 50%TiO2/6%WO3 Sol Solutions Sensitized by Acetone (50%TiO2/6%WO3 졸 용액에서의 톨루엔 처리에 대한 아세톤의 광활성 증가효과)

  • Shin, Hye-Seung;Kim, Jae-Hyoun
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.3
    • /
    • pp.261-268
    • /
    • 2012
  • Objectives: The photocatalytic degradation of toluene in a batch mode photoreactor for the purpose of the hazardous waste treatment was investigated. Methods: Kinetic experiments using a low pressure mercury lamp (Lambda Scientific Pty Ltd, 50 Watt) emitting both UV and visible light were performed at $31^{\circ}C$ over toluene concentrations ranging from 10 to 50 mg/l in water with $50%TiO_2/6%WO_3$ (TW) concentration of 1 g/l at a pH of 6. Results: Kinetic studies showed that $50%TiO_2/6%WO_3$ (TW) photocatalyst was highly active in toluene degradation; we observed that 99% of the pollutant was degraded after six hours under visible irradiation; furthermore, we observed that adsorption onto TW catalyst was responsible for the decrease of toluene with pseudo-first order kinetics. It was also found that oxygen as a radical source in the sol medium played a significant role in affecting the photodegradation of toluene, especially with a two-fold elevation. This increase was achieved by a more than four-fold elevation of the photodegradation of toluene in the presence of acetone than without, presumably via an energy transfer mechanism. Conclusions: We concluded that photodegradation in acetone and oxygen molecules along with TW was an effective method for the removal of toluene from wastewater.

Desalination performance of Al2O3 positively charged nanofiltration composite membrane

  • Li, Lian;Zhang, Xiating;Li, Lufen;Yang, Zhongcao;Li, Yuan
    • Membrane and Water Treatment
    • /
    • v.13 no.2
    • /
    • pp.105-110
    • /
    • 2022
  • Al2O3 positively charged nanofiltration composite membrane was successfully prepared with aluminate coupling agent (ACA) as modifier, sodium bisulfite (NaHSO3) and potassium persulfate (K2S2O8) as initiator and methacryloyloxyethyl trimethylammonium chloride (DMC) as crosslinking monomer. The surface of the membrane before grafting and after polymerization were characterized by SEM and FT-IR. Three factor and three-level orthogonal experiments were designed to explore the optimal conditions for membrane preparation, and the optimal group was successfully prepared. The filtration experiments of different salt solutions were carried out, and the retention molecular weight was determined by polyethylene glycol (PEG). The results showed that the polymerization temperature had the greatest effect on the rejection rate, followed by the reaction time, and the concentration of DMC had the least effect on the rejection rate. The rejection rates of CaCl2, MgSO4, NaCl and Na2SO4 in the optimal group were 83.8%, 81.3%, 28.1% and 23.6% (average value), respectively. The molecule weight cut-off of 90% (MWCO) of the optimal group was about 460, which belongs to nanofiltration membrane.

NaHSO4/SiO2: An Efficient Catalyst for the Synthesis of β-Enaminones and 2-Methylquinolin-4(1H)-Ones under Solvent-Free Condition (NaHSO4/SiO2: Solvent-Free 반응 조건에서 β-Enaminone들과 2-Methylquinolin-4(1H)-One들의 합성을 위한 효율적인 촉매)

  • Sapkal, Suryakant B.;Shelke, Kiran F.;Shingate, Bapurao B.;Shingare, Murlidhar S.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.6
    • /
    • pp.723-726
    • /
    • 2010
  • An efficient and simplified protocol for $NaHSO_4/SiO_2$ catalyzed solvent-free synthesis of $\beta$-enaminone and 2-methylquinolin-4(1H)-one derivatives under microwave irradiation is described. A series of functionalized derivatives have been synthesized in shorter reaction times with moderate to good yields. The use of milder catalyst in non-conventional method offers significant advantages over conventional methods, such as higher selectivities, simplicity, solvent-free reaction and non-environmental polluting conditions.

The Gas Sensing Properties of Thick Film Gas Sensor Using Co3O4 Powder Prepared by Hydrothermal Reaction Method (수열합성법으로 제조된 Co3O4 분말을 사용한 후막 가스센서의 가스감지 특성)

  • Kim, Kwang-Hee;Kim, Jeong-Gyoo;Park, Ki-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.406-411
    • /
    • 2011
  • $Co_3O_4$ thick film gas sensor using the powder prepared by hydrothermal reaction method(HRM) was fabricated. For comparison study, we also prepared the sensor using commercial $Co_3O_4$ powder under the same fabrication conditions. Sensitivity, time response, and selectivity of them to variable gases such as iso-$C_4H_{10}$, CO, $NH_3$, and $CH_4$ were investigated. The sensor from the powder prepared by HRM showed higher sensitivity to every gas than those from commercial powder. For iso-$C_4H_{10}$ gas, the sensitivities of both sensor to 100 ppm are 160 % and 40 %, respectively. Time response and selectivity of the sensor using the powder prepared by HRM were better than those of the sensor using commercial powder.

Effect of Modified Atmosphere Packaging on Quality Preservation of Rice Cake (Ddukgukdduk) (떡국 떡의 품질유지에 미치는 변형기체포장(MAP) 효과)

  • Jung, Soo Yeon;An, Duck Soon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • Packages of different atmospheres (air (control), 100% CO2, vacuum, and vacuum + O2 absorber) were prepared for 0.4 kg rice cake (ddukgukdduk) using gas-barrier plastic film and stored at 10℃ for 11 days. The stored products were evaluated in their packages atmosphere, total aerobic bacteria, yeast and molds, texture and sensory quality during storage period. In the air package, the O2 concentration decreased from initial 21% to 16% on storage 4 days and the CO2 concentration increased to 23% on storage of 11 days, which resulted from the growth of microorganisms. CO2 concentration decreased from initial 98% to 36% on storage 11 days in the 100% CO2 package. It is reasoned that CO2 was dissolved into the product reducing the volume of the package. Vacuum and vacuum +O2 absorber package maintained shrunk vacuum condition until 11 days of storage. Total aerobic bacteria count increased significantly in the control package (6.41 log (cfu/g) after 11 days) compared to the 100% CO2 package (4.96 log (cfu/g) after 11 days). Yeast and molds were 6.66 in control package, 3.43 in 100% CO2 package, 4.66 in vacuum package, and 3.78 in vacuum + O2 absorber package after 11 days. There was no significant difference between control and the other treatments for the texture of the stored products. Sensory quality was the worst in control package on the storage of 8 days. All treatment groups except control improved the quality preservation, but vacuum and vacuum + O2 absorber packages suffered from cracking of the product. Thus 100% CO2 flushing is suggested as a desired packaging condition.

Synthesis of TiO2 nanoparticles using Water-in-oil microemulsion method (유중수형(油中水型) 마이크로에멀젼법을 이용한 타이타니아 나노입자의 제조)

  • So Min Jin;Hyeon Jin;Seong Ju Kim;Yu Na Kim;Dae-Won Lee
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.1-6
    • /
    • 2023
  • TiO2 is a versatile metal oxide material that is frequently used as a photo-catalyst for organic pollutant oxidation and a functional material for ultraviolet-ray protection. To improve its chemical/physical properties and widen the range of industrial application, it is demanded to control the crystalline feature and morphology precisely by applying advanced nano-synthesis methods. In this study, we prepared TiO2 nanoparticles using the water-in-oil (W/O) microemulsion method and compared them with the particles synthesized by the conventional precipitation method. Also, we tried to find the optimum conditions for obtaining nano-sized, anatase-rich TiO2 particles by the W/O microemulsion method. We analyzed the crystalline feature and particle size of the prepared samples using X-ray diffraction (XRD) and Transmission electron microscopy (TEM). In summary, we found the W/O microemulsion is more effective than precipitation in obtaining nano-sized TiO2. The best result was derived when the microemulsion was formed using AOT surfactant, hydrolysis was performed under basic condition and the sample was calcined at 200℃.

Dielectric Properties of K(Ta0.6Nb0.4)O3 Thin Films Prepared by Sol-Gel Method for Microwave Applications (마이크로웨이브 응용을 위한 솔-젤법으로 제작한 K(Ta0.6Nb0.4)O3 박막의 유전 특성)

  • Kwon, Min-Su;Lee, Sung-Gap;Kim, Kyeong-Min;Lee, Sam-Haeng;Kim, Young-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.403-407
    • /
    • 2018
  • In this study, double layer KTN/STO thin films were fabricated on $Pt/Ti/SiO_2/Si$ substrate, their structural and electrical properties were measured according with the number of STO coatings, and their applicability to microwave materials was investigated. The average grain size was about 80~90 nm, the average thickness of the 6-coated KTN thin film was about 320 nm, and the average thickness of the STO thin film coated once was about 45~50 nm. The dielectric constant decreased with increasing frequency, and as the number of STO coatings increased, the rate of change of the dielectric constant with the applied electric field decreased. The tunability of the KTN thin film showed a maximum value of 19.8% at 3 V. The figure of merit of the KTN/1STO thin film was 9.8 at 3 V.

Electrochemical Sensing of Hydrogen Peroxide Using Prussian Blue@poly(p-phenylenediamine) Coated Multi-walled Carbon Nanotubes

  • Young-Eun Jeon;Wonhyeong Jang;Gyeong-Geon Lee;Hun-Gi Hong
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.5
    • /
    • pp.339-347
    • /
    • 2023
  • In this study, a nanocomposite of multi-walled carbon nanotubes@poly(p-phenylenediamine)-Prussian blue (MWCNTs@PpPD-PB) was synthesized and employed for the electrochemical detection of hydrogen peroxide (H2O2). A straightforward approach was utilized to prepare an electrochemical H2O2 sensor using a MWCNTs@PpPD-PB modified glassy carbon electrode, and its electrochemical behavior was investigated through techniques such as electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry. The modified electrode displayed a favorable electrocatalytic response towards the reduction of H2O2 in an acidic solution. The developed sensor exhibited linearity in the concentration range of 0.005 mM to 2.225 mM for H2O2, with high sensitivity (583.6 ㎂ mM-1cm-2) and a low detection limit (0.95 ㎛, S/N = 3) at an applied potential of +0.15 V (vs. Ag/AgCl). Additionally, the sensor demonstrated excellent selectivity, reproducibility, and stability. Moreover, successful detection of H2O2 was achieved in real samples.