• Title/Summary/Keyword: As(V) (arsenate)

Search Result 46, Processing Time 0.03 seconds

Removal of As(III) and As(V) in Aqueous Phases by Fe and Mn Oxides Coated Granular Activated Carbon (철 및 망간 산화물로 코팅된 입자활성탄을 이용한 수용액 중 As(III) 및 As(V)의 제거)

  • Lee, Hee-Yong;Yang, Jung-Seok;Choi, Jae-Young;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.619-626
    • /
    • 2009
  • The objective of this study was to evaluate the efficiency of Fe and Mn oxides coated granular activated carbons (FMOCGs) for the removal of arsenite and arsenate by oxidation and adsorption mechanisms using surface characterization and batch adsorption experiments. Within four manufactured adsorbents, Fe and Mn contents of FMOCG-1 was the highest (178.12 mg Fe/g and 11.25 mg Mn/g). In kinetic results, As(III) was removed by oxidation and adsorption with FMOCGs. Removal of arsenic by FMOCGs increased as pH value of the solution decreased. The adsorption isotherm results were well fitted with Langmuir isotherm. Adsorption amount of As(V) onto FMOCGs was higher than that of As(III) and the maximum adsorption capacities of FMOCGs for As(III) and As(V) were 1.38~8.44 mg/g and 2.91~9.63 mg/g, respectively.

Comparative Study of Holmium (III) Selective Sensors Based on Thiacalixarene and Calixarene Derivatives as an Ionophore

  • Singh, Sanjay;Rani, Geeta
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2229-2237
    • /
    • 2012
  • The two chelates based on calix[4]arene and thiacalix[4]arene have been synthesized and used as neutral ionophores for preparing PVC based membrane sensor selective to $Ho^{3+}$ ion. The addition of potassium tetrakis(4-chlorophenyl)borate (KTpClPB) and various plasticizers, viz., NDPE, o-NPOE, DOP, TEP and DOS have been found to improve significantly the performance of the sensors. The best performance was obtained with the sensor no. 6 having membrane of $L_2$ with composition (w/w) ionophore (2%): KTpClPB (4%): PVC (37%): NDPE (57%). This sensor exhibits Nernatian response with slope $21.10{\pm}0.3mV/decade$ of activity in the concentration range $3.0{\times}10^{-8}-1.0{\times}10^{-2}M\;Ho^{3+}\;ion$, with a detection limit of $1.0{\times}10^{-8}M$. The proposed sensor performs satisfactorily over a wide pH range of 2.8-10, with a fast response time (5 s). The sensor was also found to work successfully in partially non-aqueous media up to 25% (v/v) content of methanol, ethanol and acetonitrile, and can be used for a period of 4 months without any significant drift in potential. The electrode was also used for the determination of $Ho^{3+}$ ions in synthetic mixtures of different ions and the determination of the arsenate ion in different water samples.

Risk Assessment about Heavy Metals Contamination in Agricultural Products at Abandoned Mine Area (폐광산 인근 지역에서 생산되는 농산물의 중금속 오염도 평가)

  • An, Jae-Min;Chang, Soon-Young;Hwang, Hyang-Ran;Park, Dae-Han;Lee, Bom-Nae;Kim, Saet-Byeol;Lee, Gwang-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.10-19
    • /
    • 2020
  • BACKGROUND: This study was to carry out risk assessment of contamination of cadmium (Cd), lead (Pb), and inorganic arsenic (I-As) in agricultural products of 25 crops from the abandoned mine areas. The 36 typical investigation sites located in Gyeongbuk provincial area were selected by considering the heavy metal levels, that had been known that the amount of the heavy metals exceeded the contamination level based on the previous survey. METHODS AND RESULTS: Cadmium, lead, and total arsenic (T-As) concentrations were determined using microwave device and ICP-MS. Inorganic arsenic was determined by HPLC-ICP-MS. The limits of quantification for heavy metals were 0.59 ㎍/kg for Cd, 0.42 ㎍/kg for Pb, 0.55 ㎍/kg for T-As, and sum of As (III) (1.74 ㎍/kg) and As (V) (2.25 ㎍/kg) for I-As, respectively. The contents of Cd, Pb, and I-As (only rice) were N.D.-0.958 mg/kg, N.D.-0.227 mg/kg, and 0.082 mg/kg, respectively, in the agricultural products. For risk assessment, dietary exposures of heavy metals through usual intake were 5.20×10-4-7.15×100 ㎍/day for Cd, 7.00×10-5-7.75×10-1 ㎍/day for Pb, and 1.17×101 ㎍/day for I-As, taking 0.01-14.37%, 0.01-2.05%, and 15.16% as risk indices, respectively. CONCLUSION: It requires to consider the critical levels of heavy metals in agricultural products due to unexpectedly high levels in a few places, while concentrations of heavy metals in the samples were relatively low in most areas.

Adsorption Characteristics of Arsenic on Composite Adsorbents using Recycled Aluminium Oxides and $TiO_2$ (재생 알루미늄 산화물과 $TiO_2$의 복합성형체를 이용한 비소 흡착 특성)

  • Min, Kyung-Chul;Lee, Seung-Mok;Kim, Keun-Han;Lee, Hee-Yong;Yang, Jae-Kyu;Park, Youn-Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.197-201
    • /
    • 2012
  • The objective of this study was to evaluate the removal efficiency of arsenite and arsenate using composite adsorbents with various mixing ratio of recycled aluminum oxides and $TiO_2$. From batch adsorption experiments, while the removal of As(III) was almost same with 4 different composite samples in the entire pH range, the removal of As(V) was substantially increased as the weight ratio of $TiO_2$ in composite samples reduced and showed anionic adsorption characteristics. Both adsorption of As (III) and As(V) on composite samples followed pseudo-second-order adsorption equation and C-3 showed faster reaction rate for the removal of arsenic. From the adsorption isotherm experiments, Langmuir isotherm explained well and the maximum adsorption capacities of arsenic were obtained with C-1.

Reactions of As(V) with Fe(II) under the Anoxic Conditions (무산소 조건에서의 Fe(II)와 As(V)의 반응에 관한 연구)

  • Jung, Woo-Sik;Lee, Sang-Hun;Chung, Hyung-Keun;Kim, Sun-Joon;Choi, Jae-Young;Jeon, Byong-Hun
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.487-494
    • /
    • 2009
  • The purpose of this study was to investigate the feasibility of As(V) reduction by aqueous Fe(II), and subsequent As(III) immobilization by the precipitation of As(III) incorporated magnetite-like material [i.e., co-precipitation of As(III) with Fe(II) and Fe(III)]. Experimental results showed that homogeneous As(V) reduction did not occur by dissolved Fe(II) at various pH values although the thermodynamic calculation was in favor of the redox reaction between As(V) and Fe(II) under the given chemical conditions. Similarly, no heterogeneous reduction of sorbed As(V) by sorbed Fe(II) was observed using synthetic iron (oxy)hydroxide (Goethite, ${\alpha}$-FeOOH) at pH 7. Experimental results for the effect of As(V) on the oxidation of Fe(II) by dissolved oxygen showed that As(V) inhibited the oxidation of Fe(II). These results indicate that As(V) could be stable in the presence of Fe(II) under the anoxic or subsurface environments.

Arsenic Contamination of Groundwater a Grave Concern: Novel Clay-based Materials for Decontamination of Arsenic (V)

  • Amrita Dwivedi;Diwakar Tiwari;Seung Mok Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.199-205
    • /
    • 2023
  • Arsenic is a highly toxic element, and its contamination is widespread around the world. The natural materials with high selectivity and efficiency toward pollutants are important in wastewater treatment technology. In this study, the mesoporous synthetic hectorite was synthesized by facile hydrothermal crystallization of gels comprising silica, magnesium hydroxide, and lithium fluoride. Additionally, the naturally available clay was modified using zirconium at room temperature. Both synthetic and modified natural clays were employed in the removal of arsenate from aquatic environments. The materials were fully characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform-infrared (FT-IR) analyses. The synthesized materials were used to remove arsenic (V) under varied physicochemical conditions. Both materials, i.e., Zr-bentonite and Zr-hectorite, showed high percentage removal of arsenic (V) at lower pH, and the efficiency decreased in an alkaline medium. The equilibrium-state sorption data agrees well with the Langmuir and Freundlich adsorption isotherms, and the maximum sorption capacity is found to be 4.608 and 2.207 mg/g for Zr-bentonite and Zr-hectorite, respectively. The kinetic data fits well with the pseudo-second order kinetic model. Furthermore, the effect of the background electrolytes study indicated that arsenic (V) is specifically sorbed at the surface of these two nanocomposites. This study demonstrated that zirconium intercalated synthetic hectorite as well as zirconium modified natural clays are effective and efficient materials for the selective removal of arsenic (V) from aqueous medium.

Characterization of Arsenic Adsorption onto Hematite (적철석(Hematite) 표면의 비소 흡착 특성)

  • Kim, Seong Hee;Lee, Woo Chun;Cho, Hyen Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.197-210
    • /
    • 2012
  • Hematite has been known to be the most stable form of various iron (oxyhydr)oxides in the surface environments. In this study, its properties as an adsorbent were examined and also adsorption of arsenic onto hematite was characterized as well. The specific surface area of hematite synthesized in our laboratory appeared to be $31.8g\;m^2/g$ and its point of zero salt effect, (PZSE) determined by potentiometric titration was observed 8.5. These features of hematite may contribute to high capacity of arsenic adsorption. From several adsorption experiments undertaken at the identical solution concentrations over pH 2~12, the adsorption of As(III) (arsenite) was greater than that of As(V) (arsenate). As of pH-dependent adsorption patterns, in addition, arsenite adsorption gradually increased until pH 9.2 and then sharply decreased with pH, whereas adsorption of arsenate was greatest at pH 2.0 and steadily decreased with the increasing pH from 2 to 12. The characteristics of these pH-dependent adsorption patterns might be caused by combined effects of the variation in the chemical speciation of arsenic and the surface charge of hematite. The experimental results on adsorption kinetics show that adsorption of both arsenic species onto hematite approached equilibrium within 20 h. Additionally, the pseudo-second-order model was evaluated to be the best fit for the adsorption kinetics of arsenic onto hematite, regardless of arsenic species, and the rate constant of As(V) adsorption was investigated to be larger than that of As(III).

Lime based stabilization/solidification (S/S) of arsenic contaminated soils

  • Moon, Deok-Hyun
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.12a
    • /
    • pp.51-62
    • /
    • 2004
  • Lime based stabilization/solidification (S/S) can be an effective remediation alternative for the immobilization of arsenic (As) in contaminated soils and sludges. However, the exact immobilization mechanism has not been well established, Based on previous research, As immobilization could be attributed to sorption and/or inclusion in pozzolanic reaction products and/or the formation of calcium-arsenic (Ca-As) precipitates. In this study, suspensions of lime-As were studied in an attempt to elucidate the controlling mechanism of As immobilization in lime treated soils. Aqueous lime-As suspensions (slurries) with varying Ca/As molar ratios (1:1, 1.5:1, 2:1, 2.5:1 and 4:1) were prepared and soluble As concentrations were determined. X-ray diffraction (XRD) analyses were used to establish the resulting mineralogy of crystalline precipitate formation. Depending on the redox state of the As source, different As precipitates were identified. When As (III) was used, the main precipitate formation was Ca-As-O. With As(V) as the source, Ca4(OH)2(AsO4)2${\cdot}$4H2O formed at Ca/As molar ratios greater than 1:1. A significant increase in As (III) immobilization was observed at Ca/As molar ratios greater than 1:1. Similarly, a substantial increase in As (V) immobilization was noted at Ca/As molar ratios greater than or equal to 2.5: 1. This observation was also confirmed by XRD. The effectiveness of both As (III) and As(V) immobilization in these slurries appeared to increase with increasing Ca/As molar ratios.

  • PDF

Stabilization of As (arsenic(V) or roxarsone) Contaminated Soils using Zerovalent Iron and Basic Oxygen Furnace Slag (영가철(Zerovalent Iron)과 제강슬래그를 이용한 비소(V) 및 록살슨(Roxarsone) 오염토양의 비소 안정화 효율 평가)

  • Lim, Jung-Eun;Kim, Kwon-Rae;Lee, Sang-Soo;Kwon, Oh-Kyung;Yang, Jae-E;Ok, Yong-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.631-638
    • /
    • 2010
  • The objective of this study was to evaluate the efficiency of zerovalent iron and basic oxygen furnace slag on arsenic stabilization in soils. For this, arsenic (V) contaminated soil and roxarsone contaminated soil were incubated after incorporation with zerovalent iron (ZVI) or basic oxygen furnace slage (BOFS) at four different levels (0%, 1%, 3%, and 5%) for 30 days and then the residual concentrations of arsenic were analysed following extraction with aqua reqia, 1N HCl and 0.01 M $CaCl_2$. The total concentration of arsenic was 2,285 mg/kg in the As(V) contaminated soil and 6.5 mg/kg in the roxarsone contaminated soil. 1 N HCl extractable arsenic concentration in the As(V) contaminated soil was initially 1,351 mg/kg and this was significantly declined by 713~1,034 mg/kg following incubation with ZVI while BOFS treatment showed no effect on the stabilization of inorganic arsenate except 5% treatment which showed around 100 mg/kg reduction in 1N HCl extractable arsenic. Similarly, in the roxarsone contaminated soil 1N HCl extractable concentration of arsenic was reduced from 3.13 mg/kg to 0.69 mg/kg with ZVI treatment increased from 1% to 5% while BOFS treatment did not lead to any statistically significant reduction. Available (0.01M $CaCl_2$ extractable) arsenic was initially 0.85 mg/kg in the As(V) contaminated soil and this declined by 0.79 mg/kg following incorporation with 5% ZVI, which accounted for more than 90% of the available As in the control. When As(V)-contaminated soil was treated with BOFS, the available arsenic was increased due to competing effect of the phosphate originated from BOFS with arsenate for the adsorption sites. For the roxarsone contaminated soil, the greater the treatment of ZVI or BOFS, the lower the available arsenic concentration although it was still higher than that of the control.

Preliminary Results of Extraction, Separation and Quantitation of Arsenic Species in Food and Dietary Supplements by HPLC-ICP-MS

  • Nam, Sang-Ho;Cheng, John;Mindak, William R.;Capar, Stephen G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.903-908
    • /
    • 2006
  • Various extraction procedures were investigated using reference materials and samples to evaluate extraction efficiency and effectiveness. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure total arsenic and to quantitate arsenic species when coupled to an HPLC (high pressure liquid chromatography). Arsenic species were extracted from rice flour (NIST SRM 1568a) with water/methanol mixtures using accelerated solvent extraction (ASE). Total arsenic extraction efficiency ranged from 42 to 64%, for water and various methanol concentrations. From spinach (NIST SRM 1570), freeze-dried apple, and rice flour (NIST SRM 1568a), arsenic species were extracted with trifluoroacetic acid (TFA) at 100 ${^{\circ}C}$. Total arsenic extraction efficiency was 90% for spinach, 75% for freeze-dried apple, and 83% for rice flour. Enzymatic extraction with alpha-amylase and sonication resulted in extraction efficiency of 104% for rice flour, 98% for freeze-dried apple, and 7% for spinach. Chromatograms of arsenic species extracted by the optimum extraction methods were obtained, and the species were quantified. Arsenite (As(III)), arsenate (As(V)), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA) were found in the apple sample, and DMA and As(V) in the rice flour sample. As(V) and MMA were found in three herbal dietary supplement samples.