• Title/Summary/Keyword: Artificial-Intelligence

Search Result 5,387, Processing Time 0.027 seconds

An Empirical Study on Future New Technology in Defense Unmanned Robot (국방 무인로봇 분야 미래 신기술에 관한 실증연구)

  • Kim, DoeHun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.611-616
    • /
    • 2018
  • With the recent increase in awareness of the diversification of patterns of warfare and security, technological evolution is occurring in the field of autonomous defense robots. As defense science and technology develops with the development of the concept of military utilization focusing on human lives and economic operation, the importance of autonomous robots in the effect-oriented future battlefield is increasing. The major developed countries have developed core technologies, investment strategies, priorities, data securing strategies and infrastructure development related to the field of autonomous defense robots, and research activities such as technology planning and policy strategy for autonomous defense robots in Korea have already begun. In addition, the field of autonomous defense robots encompasses technologies that represent the fourth industrial revolution, such as artificial intelligence, big data, and virtual reality, and so the expectations for this future area of technology are very high. It is difficult to predict the path of technological development due to the increase in the demand for new rather than existing technology. Moreover, the selection and concentration of strategic R&D is required due to resource constraints. It is thought that a preemptive response is needed. This study attempts to derive 6 new technologies that will shape the future of autonomous defense robots and to obtain meaningful results through an empirical study.

Development of Joint-Based Motion Prediction Model for Home Co-Robot Using SVM (SVM을 이용한 가정용 협력 로봇의 조인트 위치 기반 실행동작 예측 모델 개발)

  • Yoo, Sungyeob;Yoo, Dong-Yeon;Park, Ye-Seul;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.491-498
    • /
    • 2019
  • Digital twin is a technology that virtualizes physical objects of the real world on a computer. It is used by collecting sensor data through IoT, and using the collected data to connect physical objects and virtual objects in both directions. It has an advantage of minimizing risk by tuning an operation of virtual model through simulation and responding to varying environment by exploiting experiments in advance. Recently, artificial intelligence and machine learning technologies have been attracting attention, so that tendency to virtualize a behavior of physical objects, observe virtual models, and apply various scenarios is increasing. In particular, recognition of each robot's motion is needed to build digital twin for co-robot which is a heart of industry 4.0 factory automation. Compared with modeling based research for recognizing motion of co-robot, there are few attempts to predict motion based on sensor data. Therefore, in this paper, an experimental environment for collecting current and inertia data in co-robot to detect the motion of the robot is built, and a motion prediction model based on the collected sensor data is proposed. The proposed method classifies the co-robot's motion commands into 9 types based on joint position and uses current and inertial sensor values to predict them by accumulated learning. The data used for accumulating learning is the sensor values that are collected when the co-robot operates with margin in input parameters of the motion commands. Through this, the model is constructed to predict not only the nine movements along the same path but also the movements along the similar path. As a result of learning using SVM, the accuracy, precision, and recall factors of the model were evaluated as 97% on average.

The 4th.industrial revolution and Korean university's role change (4차산업혁명과 한국대학의 역할 변화)

  • Park, Sang-Kyu
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.1
    • /
    • pp.235-242
    • /
    • 2018
  • The interest about 4th Industrial Revolution was impressively increased from newspapers, iindustry, government and academic sectors. Especially AI what could be felt by the skin of many peoples, already overpassed the ability of the human's even in creative areas. Namely, now many people start fo feel that the effect of the revolution is just infront of themselves. There were several issues in this trend, the ability of deep learning by machine, the identity of the human, the change of job environment and the concern about the social change etc. Recently many studies have been made about the 4th industrial revolution in many fields like as AI(artificial intelligence), CRISPR, big data and driverless car etc. As many positive effects and pessimistic effects are existed at the same time and many preventing actions are being suggested recently, these opinions will be compared and analyzed and better solutions will be found eventually. Several educational, political, scientific, social and ethical effects and solutions were studied and suggested in this study. Clear implication from the study is that the world we will live from now on is changing faster than ever in the social, industrial, political and educational environment. If it will reform the social systems according to those changes, a society (nation or government) will grasp the chance of its development or take-off, otherwise, it will consume the resources ineffectively and lose the competition as a whole society. But the method of that reform is not that apparent in many aspects as the revolution is progressing currently and its definition should be made whether in industrial or scientific aspect. The person or nation who will define it will have the advantage of leading the future of that business or society.

Remote Control of Network-Based Modular Robot (네트웍 기반 모듈라 로봇의 원격 제어)

  • Yeom, Dong-Joo;Lee, Bo-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.5
    • /
    • pp.77-83
    • /
    • 2018
  • A modular robot that memorizes motion can be easily created and operated because it expresses by hand. However, since there is not enough storage space in the module to store the user-created operation, it is impossible to reuse the created operation, and when the modular robot again memorizes the operation, it changes to another operation. There is no main controller capable of operating a plurality of modular robots at the same time, and thus there is a disadvantage that the user must input directly to the modular robot. To overcome these disadvantages, a remote controller has been proposed that can be operated in the surrounding smart devices by designing web server and component based software using wired and wireless network. In the proposed method, various types of structures are created by connecting to a modular robot, and the reconstructed operation is performed again after storing, and the usefulness is confirmed by regenerating the stored operation effectively. In addition, the reliability of the downloaded trajectory data is verified by analyzing the difference between the trajectory data and the actual trajectory. In the future, the trajectory stored in the remote controller will be standardized using the artificial intelligence technique, so that the operation of the modular robot will be easily implemented.

An Empirical Study for Performance Evaluation of Web Personalization Assistant Systems (웹 기반 개인화 보조시스템 성능 평가를 위한 실험적 연구)

  • Kim, Ki-Bum;Kim, Seon-Ho;Weon, Sung-Hyun
    • The Journal of Society for e-Business Studies
    • /
    • v.9 no.3
    • /
    • pp.155-167
    • /
    • 2004
  • At this time, the two main techniques for achieving web personalization assistant systems generally concern direct manipulation and software agents. While both direct manipulation and software agents are intended for permitting user to complete tasks rapidly, efficiently, and easily, their methodologies are different. The central debate involving these web personalization techniques originates from the amount of control that each allows to, or holds back from, the users. Direct manipulation can provide users with comprehensibel, predictable and controllable user interfaces that give them a feeling of accomplishnent and responsibility. On the other hand, the intelligent software components, the agents, can assist users with artificial intelligence by monitoring or retrieving personal histories or behaviors. In this empirical study, two web personalization assistant systems are evaluated. One of them, WebPersonalizer, is an agent based user personalization tool; the other, AntWorld, is a collaborative recommendation tool which provides direct manipulation interfaces. Through this empirical study, we have focused on two different paradigms as web personalization assistant systems : direct manipulation and software agents. Each approach has its own advantages and disadvantages. We also provide the experimental result that is worth referring for developers of electronic commerce system and suggest the methodologies for conveniently retrieving necessary information based on their personal needs.

  • PDF

Analyzing the effects of artificial intelligence (AI) education program based on design thinking process (디자인씽킹 프로세스 기반의 인공지능(AI) 교육 프로그램 적용 효과분석)

  • Lee, Sunghye
    • The Journal of Korean Association of Computer Education
    • /
    • v.23 no.4
    • /
    • pp.49-59
    • /
    • 2020
  • At the beginning of the discussion of AI education in K-12 education, the study was conducted to develop and apply an AI education program based on Design Thinking and analyze the effects of the AI education programs. In the AI education program, students explored and defined the AI problems they were interested in, gathered the necessary data to build an AI model, and then developed a project using scratch. In order to analyze the effectiveness of the AI education program, the change of learner's perception of the value of AI and the change of AI efficacy were analyzed. The overall perception of the AI project was also analyzed. As a result, AI efficacy was significantly increased through the experience of carrying out the project according to the Design Thinking process. In addition, the efficacy of solving problems with AI was influenced by the level of use of programming languages. The learner's overall perception of the AI project was positive, and the perceptions of each stage of the AI project (AI problem understanding and problem exploration, practice, problem definition, problem solving idea implementation, evaluation and presentation) was also positive. This positive perception was higher among students with high level of programming language use. Based on these results, the implications for AI education were suggested.

A study on legal service of AI

  • Park, Jong-Ryeol;Noe, Sang-Ouk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.7
    • /
    • pp.105-111
    • /
    • 2018
  • Last March, the world Go competition between AlphaGo, AI Go program developed by Google Deep Mind and professional Go player Lee Sedol has shown us that the 4th industrial revolution using AI has come close. Especially, there ar many system combined with AI hae been developing including program for researching legal information, system for expecting jurisdiction, and processing big data, there is saying that even AI legal person is ready for its appearance. As legal field is mostly based on text-based document, such characteristic makes it easier to adopt artificial intelligence technology. When a legal person receives a case, the first thing to do is searching for legal information and judical precedent, which is the one of the strength of AI. It is very difficult for a human being to utilize a flow of legal knowledge and figures by analyzing them but for AI, this is nothing but a simple job. The ability of AI searching for regulation, precedent, and literature related to legal issue is way over our expectation. AI is evaluated to be able to review 1 billion pages of legal document per second and many people agree that lot of legal job will be replaced by AI. Along with development of AI service, legal service is becoming more advanced and if it devotes to ethical solving of legal issues, which is the final goal, not only the legal field but also it will help to gain nation's trust. If nations start to trust the legal service, it would never be completely replaced by AI. What is more, if it keeps offering advanced, ethical, and quick legal service, value of law devoting to the society will increase and finally, will make contribution to the nation. In this time where we have to compete with AI, we should try hard to increase value of traditional legal service provided by human. In the future, priority of good legal person will be his/her ability to use AI. The only field left to human will be understanding and recovering emotion of human caused by legal problem, which cannot be done by AI's controlling function. Then, what would be the attitude of legal people in this period? It would be to learn the new technology and applying in the field rather than going against it, this will be the way to survive in this new AI period.

Study of the Operation of Actuated signal control Based on Vehicle Queue Length estimated by Deep Learning (딥러닝으로 추정한 차량대기길이 기반의 감응신호 연구)

  • Lee, Yong-Ju;Sim, Min-Gyeong;Kim, Yong-Man;Lee, Sang-Su;Lee, Cheol-Gi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.54-62
    • /
    • 2018
  • As a part of realization of artificial intelligence signal(AI Signal), this study proposed an actuated signal algorithm based on vehicle queue length that estimates in real time by deep learning. In order to implement the algorithm, we built an API(COM Interface) to control the micro traffic simulator Vissim in the tensorflow that implements the deep learning model. In Vissim, when the link travel time and the traffic volume collected by signal cycle are transferred to the tensorflow, the vehicle queue length is estimated by the deep learning model. The signal time is calculated based on the vehicle queue length, and the simulation is performed by adjusting the signaling inside Vissim. The algorithm developed in this study is analyzed that the vehicle delay is reduced by about 5% compared to the current TOD mode. It is applied to only one intersection in the network and its effect is limited. Future study is proposed to expand the space such as corridor control or network control using this algorithm.

A Robust Object Detection and Tracking Method using RGB-D Model (RGB-D 모델을 이용한 강건한 객체 탐지 및 추적 방법)

  • Park, Seohee;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.61-67
    • /
    • 2017
  • Recently, CCTV has been combined with areas such as big data, artificial intelligence, and image analysis to detect various abnormal behaviors and to detect and analyze the overall situation of objects such as people. Image analysis research for this intelligent video surveillance function is progressing actively. However, CCTV images using 2D information generally have limitations such as object misrecognition due to lack of topological information. This problem can be solved by adding the depth information of the object created by using two cameras to the image. In this paper, we perform background modeling using Mixture of Gaussian technique and detect whether there are moving objects by segmenting the foreground from the modeled background. In order to perform the depth information-based segmentation using the RGB information-based segmentation results, stereo-based depth maps are generated using two cameras. Next, the RGB-based segmented region is set as a domain for extracting depth information, and depth-based segmentation is performed within the domain. In order to detect the center point of a robustly segmented object and to track the direction, the movement of the object is tracked by applying the CAMShift technique, which is the most basic object tracking method. From the experiments, we prove the efficiency of the proposed object detection and tracking method using the RGB-D model.

A Study on UI Prototyping Based on Personality of Things for Interusability in IoT Environment (IoT 환경에서 인터유저빌리티(Interusability) 개선을 위한 사물성격(Personality of Things)중심의 UI 프로토타이핑에 대한 연구)

  • Ahn, Mikyung;Park, Namchoon
    • Journal of the HCI Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.31-44
    • /
    • 2018
  • In the IoT environment, various things could be connected. Those connected things learn and operate themselves, by acquiring data. As human being, they have self-learning and self-operating systems. In the field of IoT study, therefore, the key issue is to design communication system connecting both of the two different types of subjects, human being(user) and the things. With the advent of the IoT environment, much research has been done in the field of UI design. It can be seen that research has been conducted to take complex factors into account through keywords such as multi-modality and interusability. However, the existing UI design method has limitations in structuring or testing interaction between things and users of IoT environment. Therefore, this paper suggests a new UI prototyping method. In this paper, the major analysis and studies are as follows: (1) defined what is the behavior process of the things (2) analyzed the existing IoT product (3) built a new framework driving personality types (4) extracted three representative personality models (5) applied the three models to the smart home service and tested UI prototyping. It is meaningful with that this study can confirm user experience (UX) about IoT service in a more comprehensive way. Moreover, the concept of the personality of things will be utilized as a tool for establishing the identity of artificial intelligence (AI) services in the future.

  • PDF