• Title/Summary/Keyword: Artificial upwelling structures

Search Result 8, Processing Time 0.021 seconds

A study on hydrodynamic characteristics of artificial upwelling structures (인공용승구조물의 수리학적 기능성에 관한 연구)

  • Kim, Hong-Jin;Jeon, Yong-Ho;Ryu, Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.62-67
    • /
    • 2002
  • While upwelling regions account for only 0.1% of the ocean surface, they yield over 40% of world's fish catch. Thus it is vary important making upwelling region by various methods. This study was performed to find out basic hydrodynamic characteristics (function, stability..,) of artificial upwelling structures. The hydrodynamic characteristics of artificial upwelling structures can be summarized as follows: 1) The falling velocity of blocks was effected size($l_B$) of blocks than incident current velocity( $V_0$). 2) The falling horizontal distance was reduced as induce of stratification parameters and block' size. 3) Generation of artificial upwelling current was effected by size of structures and incident current. When stratification parameters was about 3.0 and relative height(hs/h) of structures was about $0.125{\sim}0.15$, stable artificial upwelling current was generated in the back-side of structures.

  • PDF

An Experimental Study for the Falling Test and Upwelling Effect of the Artificial Upwelling Structures in Flow Field (흐름장에서 인공용승구조물의 블록투하 및 용승효과에 관한 실험적 연구)

  • Jeon, Yong-Ho;Lee, Gyung-Sun;Kang, Yoon-Koo;Ryu, Cheong-Ro
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.21-27
    • /
    • 2007
  • The multiplication equipment of marine products with artificial upwelling structures could be useful in the fishing grounds near coastal areas. Artificial upwelling structures could move the inorganic nutrients from the bottom to the surface. Artificial upwelling structures have been used to improve the productivity of fishing grounds. Until now, research on artificial upwelling structures has been related to the distribution of the upwelling region, upwelling structures, and the marine environment. However, little work on the optimum design of the rubber-mound artificial upwelling structures has been done to increase the efficiency of drawing up the inorganic nutrients. This study investigated the optimum cross-section of rubber-mound artificial upwelling structures by means of hydraulic experiments. The hydraulic experiments include the falling test of rubber. Based on the results of the falling test, the relationship between the length of the rubber mound and water velocity, and the relationship between the shape of the rubber and the stratification parameter were established. In addition, the effect of the void ratio of various artificial structures on the stratification parameter was studied. From the experiment, it was found that upwelling could be enhanced when the ratio of structure height to water depth was 0.3 and stratification parameter was 3.0. The upwelling was not improved when the void ratio exceeded 0.43. The optimum size of rubber mounds was determined when the incident velocity was influenced by the mean horizontal length rather than size of block.

A Study on Function of Artificial Upwelling Structure of Material (재질에 따른 인공용승구조물의 기능성에 관한 연구)

  • Jeon, Yong-Ho;Kim, Hong-Jin;Ryu, Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.277-282
    • /
    • 2002
  • This study was performed to find out basic function of artificial upwelling structures. Generation of artificial upwelling current was affected by size of structures, incident current and porosity. when stratification parameters was about 3.0, relative height(hs/h) of structures was $0.125{\sim}0.15$, stable artificial upwelling current was generated in the back-side of structures. when porosity is lower than 50%, the effect of artificial upwelling structure was to be better than little by little.

  • PDF

A Study on Characteristic of Three-Dimensional Flow around the Artificial Upwelling Structures (인공용승구조물 주변 흐름의 3차원 특성에 관한 연구)

  • Jeon, Yong-Ho;Ryu, Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.290-293
    • /
    • 2006
  • From the hydraulic experiment, it was concluded that upwelling could be enhanced when the relative structure height (the ratio of structure height to water depth) was 0.3 and stratification parameter was 3.0. In addition, the optimum size of rubbers was determined that the effect of the mean horizontal length of block was affected incident velocity than size of block. In the numerical experiment, the relation between the shape of rubber and stratification parameter was verified, ana the hydraulic characteristics of 3-D flow field around the artificial structures were investigated. Phenomena of flow field around the artificial upwelling structures corresponded with the results of hydraulic experiment. The position with maximum velocity in artificial upwelling structure was the center of top of its front side and the slip stream occurred at the inside and behind-bottom of artificial upwelling structures. The velocity of slip stream and early amplitude of velocity were higher in the inside than the behind-bottom.

  • PDF

Characteristics of Oceanographic Environment in a Building with a Sea Area for the Artificial Upwelling Structure. (인공용승구조물 설치해역의 해양환경 특성)

  • Kim Dong-Sun;Hwang Suk-Bum
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.133-137
    • /
    • 2005
  • To investigated the variation of marine environments due to set up of artificial structure, we carried out field observations. High temperature and salinity waters were distributed clearly in the southeastern part of study area during summer season. The variation of current structure was also occurred around study area where artificial structure set up. In 2005 after set up of artificial structure, the nutrient concentration increased greater than that in 2002 before set up artificial structures. To illustrate the characteristics of marine environment due to set up of artificial structure, quantitative analyses on the effect of artificial structure are important.

  • PDF

A Study on the Flow Characteristics around Underwater Triangular Structure (삼각형상 수중구조물 주위의 유동특성에 관한 연구)

  • Han, Won-Hui;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.21-27
    • /
    • 2008
  • Triangular structure is used as basic shape of artificial structures for generating the upwelling current in order to make rich fishing ground at sea. Artificial upwelling current could bring the deep sea water containing a lot of nutrients from the bottom up to the surface. The purpose of this study is to examine the flow characteristics around underwater triangular structure with various stratification parameter. An experimental study was carried out for the triangular structure model in the circulating water channel to investigate flow characteristics by flow visualization method. A velocity fields around the underwater structure were measured by particle image velocimetry(PIV). The experimental results showed that the upwelling effect at the back and upper region of the structure could be best when the water depth was 2 times of the structure height and the stratification parameter was approximately 3.0. These quantitative data will be useful to determine the functional efficiency cf artificial upwelling structures.

  • PDF

Characteristics of Oceanographic Environment in a Sea Area for the Building of Artificial Upwelling Structure (인공용승구조물 설치해역의 해양환경 특성)

  • Kim Dong-Sun;Hwang Suk-Bum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.1 s.24
    • /
    • pp.1-8
    • /
    • 2006
  • To investigate the variation of marine environments due to set up of artificial structure, we carried out field observations. High temperature and salinity waters near the south frontal area were distributed clearly in the southeastern part of study area during summer season The variation of current structure was also occurred around study area where artificial structure set up. In 2005 after set up of artificial structure, the nutrient concentration increased greater than that in 2002 before set up artificial structures. To illustrate the characteristics of marine environment due to set up of artificial structure, quantitative analyses on the effect of artificial structure are important.

  • PDF

PIV measurement on flow characteristics behind a Tetrapod in uniform flow (균일 흐름에 놓인 테트라포드 후류 유동특성에 대한 PIV 계측)

  • Gim, Ok-Sok;Lee, Kyeong-Woo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.3
    • /
    • pp.207-217
    • /
    • 2008
  • Costal regions in Korea often suffer severe damages due to wave-induced disasters, storm surge disasters and so on. therefore, many engineers and researchers have devoted their energy to prevent these costal disasters. The development of artificial reefs including sunken vessels is one of their remarkable achievements and various kind of these artificial upwelling structures have been designed and applied. However, the flow characteristics around a Tetrapod under the water has not been investigated experimentally. So in this article, in uniform flow of circulating water channel and some different velocities, PIV measurement has been conducted on the flow characteristics behind a Tetrapod. The results were analyzed on the flow characteristics of both cases of a Tetrapod. Therefore, it can be concluded that the both cases have its own distinctive flow characteristics behind the bluff body; Case A has an steep upstream flow pattern. On the contrary, Case B has an developed downstream flow pattern in the near wake of the Tetrapod. The velocity gradient at position x=150mm of Case-A appears gently up and down But, the velocity gradient at the same position of Case-B appears better highly up and down.