• 제목/요약/키워드: Artificial supercavitation

검색결과 8건 처리시간 0.019초

다중 분사 인공 초월공동에 대한 실험 연구 (An Experimental Study on Multi-Injected Artificial Supercavitation)

  • 안병권;김기성;정소원;윤현걸
    • 대한조선학회논문집
    • /
    • 제58권1호
    • /
    • pp.24-31
    • /
    • 2021
  • In this study, we present experimental observations of artificial supercavitation generated by the injection of compressed air at multiple locations on the body. Experiments were conducted at a cavitation tunnel equipped with a special facility to remove injected air before returning to the test section. Artificial supercavitation, which is generated at a relatively low speed compared to natural supercavitation, is formed asymmetrically on the axis of the body due to the buoyancy effect. In order to accelerate the development of the supercavity and increase the area covering the body, an experimental device capable of additional injection from the body was designed and its performance was evaluated through the model test. The shapes of the supercavity generated by multi-injections of different combinations according to different flow speeds were analyzed using high-speed shadow images. The results show that multiple injections at suitable locations can effectively increase the length of the supercavity and consequently improve propulsion efficiency.

An experimental investigation of artificial supercavitation generated by air injection behind disk-shaped cavitators

  • Ahn, Byoung-Kwon;Jeong, So-Won;Kim, Ji-Hye;Shao, Siyao;Hong, Jiarong;Arndt, Roger E.A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권2호
    • /
    • pp.227-237
    • /
    • 2017
  • In this paper, we investigated physical characteristics of an artificial supercavity generated behind an axisymmetric cavitator. Experiments for the same model were carried out at two different cavitation tunnels of the Chungnam National University and the University of Minnesota, and the results were compared and verified with each other. We measured pressures inside the cavity and observed the cavity formation by using a high-speed camera. Cavitation parameters were evaluated in considering blockage effects of the tunnel, and gravitational effects on supercavity dimensions were examined. Cavity dimensions corresponding to the unbounded cavitation number were compared. In addition, we investigated how artificial supercavitation develops according to the combination of injection positions and direction.

캐비테이터와 몸체의 조합에 따라 발생하는 인공 초월공동에 대한 실험연구 (An Experimental Study on Artificial Supercavitation Generated by Different Combinations of the Cavitator and Body)

  • 정소원;박상태;안병권
    • 대한조선학회논문집
    • /
    • 제56권4호
    • /
    • pp.327-334
    • /
    • 2019
  • Recently, there has been a growing interest in artificial supercavitation as a way to reduce friction drag of submerged vehicles. A cavitator plays an important role to generate the supercavity, so many studies have focused on the case of cavitator only. However, the body shape behind the cavitator affects the growth of the supercavity and this effect must be considered for evaluating the overall performance of the system. In this work, we conducted experimental investigation on artificial supercavitation generated by different combinations of the cavitator and body. We observed the supercavity pattern by using a high-speed camera and measured the pressure inside the cavity by using an absolute pressure transducer. We estimated the relation between the amount of injected air and the supercavity shape for different combinations. In summary, the disk type cavitator generates larger supercavity than that of the cone and ellipsoidal cavitators, but cavity development speed is relatively slower rather than the others. Furthermore, fore body angle plays an important role to generate the supercavity enveloping the entire body.

중력 효과를 받는 인공 초공동에 대한 수치해석 (Numerical Analysis of Artificial Supercavitation under the Gravity Effect)

  • 김지혜;정소원;안병권
    • 한국군사과학기술학회지
    • /
    • 제20권5호
    • /
    • pp.665-672
    • /
    • 2017
  • Supercavitation can be generated at relatively lower speeds by injecting compressed air behind the cavitator. As a result, an artificially created supercavity is deformed and its tail tends to rise due to gravitational effects. However, practical prediction of the artificial supercavity currently depends on empirical results. In this study, a mathematical model for the artificial supercavity under the gravity effect is proposed. Based on a boundary element method, geometric characteristics of the supercavity at different flow conditions are examined. The results were compared with an existing empirical formula and also experimental observations carried out at a cavitation tunnel of the Chungnam National University.

주기적으로 거동하는 유동장의 인공 초월공동에 대한 실험연구 (Experimental Investigation of Artificial Supercavitation under Periodic Gust Flows)

  • 정소원;박상태;안병권
    • 한국군사과학기술학회지
    • /
    • 제21권2호
    • /
    • pp.188-194
    • /
    • 2018
  • Recently a supercavitating underwater vehicle moving at high speed over 200 knots has been of interest for its practical advantage of the dramatic drag reduction. Many experimental and numerical studies have been explored, however most of the studies deal with the case of uniform flows. In this paper, we investigated physical behaviors of the artificial supercavity in a periodic gust flow. Experiments were carried out at a cavitation tunnel of the Chungnam National University(CNUCT), which is equipped to remove the gas supplied from outside of the tunnel. We devised an experimental apparatus generating vertical and horizontal gust flows, and investigated the supercavity formations at different periodic mode of the incoming flow.

고속 어뢰의 인공 초공동 특성에 대한 실험 연구 (Experimental Study on Artificial Supercavitation of the High Speed Torpedo)

  • 안병권;정소원;김지혜;정영래;김선범
    • 한국군사과학기술학회지
    • /
    • 제18권3호
    • /
    • pp.300-308
    • /
    • 2015
  • Recently supercavitating underwater torpedo moving at high speed (over 200 knots) has been interested for their practical advantage of the dramatic drag reduction. Cavitator located in front of the torpedo plays an important role to generate a natural supercavity and control the motion of the object. Supercavity can be created artificially by injection of compressed gas from the rear of the cavitator at a relatively low speed. In this paper, we investigated physical characteristics of artificial supercavities through cavitation tunnel experiments. One of the main focuses of the study was to measure pressure inside the cavity, and examined variation of the gravity effects appearing according to different amount of injected air. It was also found that a stable supercavity could be sustained at injection rates less than that required to form the stable supercavity because of hysteresis effect.

초월공동 수중운동체용 제어핀의 유체력 특성에 대한 실험연구 (An Experimental Study on Hydrodynamic Characteristics of a Control Fin for a Supercavitating Underwater Vehicle)

  • 정소원;박상태;안병권
    • 대한조선학회논문집
    • /
    • 제55권1호
    • /
    • pp.75-82
    • /
    • 2018
  • Wedge-shaped fins are generally used to provide sufficient forces and moments to control and maneuver a supercavitating vehicle. There are four fins placed along the girth of the vehicle, near he tail: two of the fins are horizontal and the other two fins are vertical. In a fully developed supercavitating flow condition, a part of the fin is in a cavity pocket and the other is exposed to water. In this paper, experimental investigations of hydrodynamic characteristics of the wedge-shaped fin models are presented. Experiments were conducted at a cavitation tunnel of the Chungnam National University. We first closely observed the typical formation of wake cavitation and measured lift and drag forces acting on two different test models. Next, using a special device for generating natural and artificial supercavities, we investigated hydrodynamic forces at different cavitation number conditions. This work provides a basis for interpreting the cavity stability and hydrodynamic characteristics of the wedge-shaped control fin for a supercavitating vehicle.

분사형 초공동 수중운동체의 가스 분사량 제어 연구 (Studies on Ventilation Control for a Ventilated Supercavitating Vehicle)

  • 김선홍;김낙완
    • 대한조선학회논문집
    • /
    • 제52권3호
    • /
    • pp.206-221
    • /
    • 2015
  • Supercavitation is a modern technique which can be used to surround an underwater vehicle with a bubble in order to reduce the resistance of the vehicle. When the vehicle is at low speed in the deep sea, the cavitation number is relatively big and it is difficult to generate a cavity large enough to envelope the vehicle. In this condition, the artificial cavity, called ventilated cavity, can be used to solve this problem by supplying gas into the cavity and can maintain supercavitating condition. In this paper, a relationship between the ventilation gas supply rate and the cavity shape is determined. Based on the relationship a ventilation rate control is developed to maintain the supercavitating state. The performance of the ventilation control is verified with a depth change control. In addition, dynamics modeling for the supercavitating vehicle is performed by defining forces and moments acting on the vehicle body in contact with water. Simulation results show that the ventilation control can maintain the supercavity of an underwater vehicle at low speed in the deep sea.