• Title/Summary/Keyword: Artificial skin

Search Result 262, Processing Time 0.025 seconds

In vitro culture of skin cells on a crosslinked gelatin based scaffold for artificial skin

  • Shin, In-Soo;Kwon, Oh-Hee;Kim, Soon-Nam;Hong, Choong-Man;Lee, Ki-Hong;Oh, Ho-Jung;Yoo, Si-Hyung;Lim, Jae-Hyun;Choi, Seung-Eun
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.100.2-101
    • /
    • 2003
  • To satisfy the increasing medical demanding especially for sever burn patients to regenerate full thickness wound cure, this study developed dermis with gelatin based scaffold and perform the biocompatibility tests. To prepare scaffold 30% of gelatin was mixed with sieved salt and dried in the mold to shape then, cross linked with a water-soluble cross-linker, EDAC. Preparing the cell for seeding from a rabbit skin, the fibroblast and keratinocyte were successfully isolated and cultured in vitro. After cell and scaffold were ready, the fibroblast was seeded to the scaffold (∼10$\^$6/ cell/cm ) for preparing dermis and keratinocyte was cultured until forming the sheet. (omitted)

  • PDF

Long V-Y advancement technique for large nipple reconstruction in Asian women

  • Jang, Nam;Kim, Junekyu;Shin, Hyun Woo;Suk, Sang Woo
    • Archives of Plastic Surgery
    • /
    • v.48 no.1
    • /
    • pp.44-48
    • /
    • 2021
  • Previously reported nipple-areolar complex reconstruction (NAR) methods involve multiple incisions and wide skin redraping, which increase retraction forces and heighten the risk of nipple-areolar complex (NAC) flattening. We introduce a NAR method using the long V-Y advancement technique that can overcome these disadvantages. A V-shaped flap is designed with the width of the flap base 4-5 mm larger than the diameter of the normal nipple. The flap length is designed to be at least 2.5 times its width. Dissection is performed to the top of the artificial dermal matrix or muscle layer. The nipple is constructed with the same projection as the contralateral side by folding the elevated flap. The tip of the elevated flap is apposed in the middle of the donor defect to minimize the deformity during donor site closure. A 3-point skin suture is applied to the upper third of the folded flap to mold its shape. Using this long V-Y advancement technique, we successfully decreased skin tension in NAC flaps and improved the maintenance of reconstructed nipple projection. The long V-Y advancement technique provides an easy, simple NAR method, effectively maintaining longer nipple projections and reducing breast deformities, especially in Asian women with relatively large nipples.

Physiological Responses of the Human Body on a Change of the Floor Temperature in Indoor (인공기후실내의 바닥온도 변화에 의한 인체의 생리적 반응)

  • Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.1 no.1
    • /
    • pp.21-30
    • /
    • 1998
  • The purpose of this study is to clarify the floor temperature on the human body and to estimate thermal comfort zone in a heated room. In order to evaluate the effects of floor heating, a series of experiments were carried out using Korean subjects. The following experiments were conducted: 1) to obtain the effective radiation area and configuration factors of the person in the sitting posture on a floor to get the mean radiant temperature, 2) to measure contacted area of the person to the floor to calculate conduction heat rate, 3) to measure convective heat transfer coefficient of the body and 4) to know the thermal comfort zone of indoor environment heated by ON-DOL. Subjects were exposed to the following conditions: combinations of air temperature $20^{\circ}C$, $22.5^{\circ}C$, $25^{\circ}C$, and floor temperature $20^{\circ}C$, $22.5^{\circ}C$, $25^{\circ}C$, $27.5^{\circ}C$, $30^{\circ}C$, $32.5^{\circ}C$, $35^{\circ}C$, $37.5^{\circ}C$, $40^{\circ}C$ under still air and 50% relative humidity in the controllable artificial climate chamber. To evaluate the effect of heat conduction between the body and a floor modified mean skin temperature was defined. Weighting coefficient to calculate mean skin temperature were modified with the contacted area. The experiments revealed a positive correlation between the modified operative temperature and the modified mean skin temperature. The modified mean skin temperature can indicate the effect of heat conduction between body and a floor surface.

  • PDF

Transmission of Apple scar skin viroid by Grafting, Using Contaminated Pruning Equipment, and Planting Infected Seeds

  • Kim, Hyun-Ran;Lee, Sin-Ho;Lee, Dong-Hyuk;Kim, Jeong-Soo;Park, Jin-Woo
    • The Plant Pathology Journal
    • /
    • v.22 no.1
    • /
    • pp.63-67
    • /
    • 2006
  • Apple scar skin, one of the most destructive diseases affecting apple, is caused by Apple scar skin viroid (ASSV d). Fruit dappling appeared on several cultivars in Korea and has been distributed to major cultivated areas since 2001. ASSVd was identified from infected fruits by using nucleic acid sequence-based amplification with electrochemiluminescence (NASBA-ECL). NASBA-ECL method was faster and hundredfold more sensitive than reverse transcription-polymerase chain reaction (RT-PCR) for ASSVd detection in apple leaves/ stems. ASSVd was rapidly transmitted to the entire tree in the second year after artificial inoculation. The ASSVd could be transmitted efficiently by using contaminated pruning scissors to both lignified stems (60 to $70\%$) and green shoots (20 to $40\%$) of apple tree and young plants. Dipping of contaminated scissors in $2\%$ sodium hypochlorite solution effectively prevented viroid transmission. In the ASSV d-infected fruits, the viroid was easily detected from fruit skin, seed coat, and embryo. Moreover, embryo and endosperm separately excised from the ASSVd-infected seeds were ASSVd positive in NASBA-ECL assay. Seedlings germinated from ASSVd-positive seeds showed $7.7\%$ infection rate., which indicated that ASSVd is seed-borne.

Pectin Micro- and Nano-capsules of Retinyl Palmitate as Cosmeceutical Carriers for Stabilized Skin Transport

  • Ro, Jieun;Kim, Yeongseok;Kim, Hyeongmin;Park, Kyunghee;Lee, Kwon-Eun;Khadka, Prakash;Yun, Gyiae;Park, Juhyun;Chang, Suk Tai;Lee, Jonghwi;Jeong, Ji Hoon;Lee, Jaehwi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.59-64
    • /
    • 2015
  • Retinyl palmitate (RP)-loaded pectinate micro- and nano-particles (PMP and PNP) were designed for stabilization of RP that is widely used as an anti-wrinkle agent in anti-aging cosmeceuticals. PMP/PNP were prepared with an ionotropic gelation method, and anti-oxidative activity of the particles was measured with a DPPH assay. The stability of RP in the particles along with pectin gel and ethanolic solution was then evaluated. In vitro release and skin permeation studies were performed using Franz diffusion cells. Distribution of RP in each skin tissue (stratum corneum, epidermis, and dermis) was also determined. PMP and PNP could be prepared with mean particle size diameters of $593{\sim}843{\mu}m$ (PMP) and 530 nm (i.e., $0.53{\mu}m$, PNP). Anti-oxidative activity of PNP was greater than PMP due largely to larger surface area available for PNP. The stability of RP in PMP and PNP was similar but much greater than RP in pectin bulk gels and ethanolic solution. PMP and PNP showed the abilities to constantly release RP and it could be permeated across the model artificial membrane and rat whole skin. RP was serially deposited throughout the skin layers. This study implies RP loaded PMP and PNP are expected to be advantageous for improved anti-wrinkle effects.

Adaptive Pressure Sensor with High Sensitivity and Large Bandwidth Based on Gallium Microdroplet-elastomer Composite (갈륨 미세입자 탄성 복합체 기반 고민감도와 광대역폭을 갖는 가변 강성 압력센서)

  • Simok, Lee;Sang-Hyuk, Byun;Steve, Park;Joo Yong, Sim;Jae-Woong, Jeong
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.423-427
    • /
    • 2022
  • A pressure sensor that mimics the sensing ability of human skin has emerged as high-profile technology because it shows remarkable applications in numerous fields such as robotics, human health monitoring, and artificial prosthetics. Whereas recent pressure sensors have achieved high sensitivity similar to that of human skin, they still show limited detection bandwidth. Moreover, once these e-skin are fabricated, their sensitivity and stiffness are fixed; therefore, they can be used for only limited applications. Our study proposes a new adaptive pressure sensor built with uniform gallium microdroplet-elastomer composite. Based on the phase transition of gallium microdroplets, the proposed sensor undergoes mode transformation, enabling it to have a higher sensitivity and wider detection bandwidth compared with those of human skin. In addition, we succeeded in extending a single adaptive pressure sensor to sensor arrays based on its high uniformity, reproducibility, and large-scale manufacturability. Finally, we designed an adaptive e-skin with the sensor array and demonstrated its applications on health monitoring tasks including blood pulse and body weight measurements.

Preparation of Oligo Hyaluronic Acid by Hydrolysis and Its Application as a Cosmetic Ingredient (저분자량 히알루론산의 제조 및 화장품에의 응용)

  • Kim, Ki-Ho;Kim, Kyoung-Tae;Kim, Young-Heui;Kim, Jin-Guk;Han, Chang-Sung;Park, Sun-Hee;Lee, Bang-Yong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.3
    • /
    • pp.189-196
    • /
    • 2007
  • In order to investigate the potential of very low molecular weight hyaluronic acid(oligo HA) as a cosmetic ingredient, we first measured its cytotoxicity in fibroblast, keratinocyte, and SIRC cell lines. For efficacy test, its moisturizing effect and penetration rate were evaluated in an artificial skin system and Caco-2 cells. Oligo HA did not show any cytotoxicity at a concentration of 300 ${\mu}g/mL$ in fibroblasts and 1,000 ${\mu}g/mL$ in keratinocytes but it showed weak proliferation. In vitro ocular test, oligo HA showed negligible cytotoxicity at the maximum concentrations used(2,000 ${\mu}g/mL$) in SIRC cells. In the test of the single and repeated cutaneous applications, oligo HA under occlusive patch did not provoke any cumulative irritation and sensitization. Oligo HA at a concentration of 0.01 % exhibited a more potent moisturizing effect than hyaluronic acid at a concentration of 0.01 %. In the permeability test using artificial skin and Caco-2 cell lines, hyaluronic acid(M.W. $1.1{\times}10^6$) was hardly observed in the down medium of the inserts. On the other hand, oligo HA(M.W. 5,000) was detected in the down medium up to 16.0 % at 6 h in Caco-2 cell culture and up to 90 % at 6 h in an artificial skin system. These results suggest that oligo HA could be useful as an active ingredient for cosmetics.

Preparation and Drug Release Properties of Naproxen Imprinted Biodegradable Polymers Based Multi-Layer Biomaterials (나프록센이 각인된 생분해성 고분자 기반 다층 바이오소재의 제조 및 약물 방출 특성)

  • Eun-Bi Cho;Han-Seong Kim;Min‑Jin Hwang;Soon-Do Yoon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.161-169
    • /
    • 2023
  • In this study, we prepared naproxen (NP) imprinted biodegradable polymer based multi-layer biomaterials using allbanggae starch (ABS), polyvinyl alcohol (PVA), and alginic acid (SA), and investigated their physicochemical properties and the controlled drug release effects. In addition, the prepared multi-layer biomaterials were characterized by FE-SEM and FT-IR. In order to confirm the controlled drug release effect for the transdermal drug delivery system (TDDS), the NP release properties of NP imprinted multi-layer biomaterials were investigated using various pH buffer solutions and artificial skin at 36.5 ℃. The results of NP release in various pH buffer solutions indicated that the NP release at high pH was about 1.3 times faster than that at low pH. In addition, NP release in multi-layer biomaterials was about 4.0 times slower than that in single-layer biomaterials. It was confirmed that the NP release rate in triple-layer biomaterials was 4.0 times slower than that in single-layer biomaterials while using artificial skin. Also, it could be found that NP in double-layer biomaterials and triple-layer biomaterials was released sustainably for 12 h. The NP release mechanism in pH buffer solutions followed the Fickian diffusion mechanism, but followed the non-Fickian diffusion mechanism with artificial skin.

A Face Robot Actuated with Artiflcial Muscle (인공근육을 이용한 얼굴로봇)

  • 곽종원;지호준;정광목;남재도;전재욱;최혁렬
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.991-999
    • /
    • 2004
  • Face robots capable of expressing their emotional status, can be adopted as an efficient tool for friendly communication between the human and the machine. In this paper, we present a face robot actuated with artificial muscle based on dielectric elastomer. By exploiting the properties of polymers, it is possible to actuate the covering skin, eyes as well as provide human-like expressivity without employing complicated mechanisms. The robot is driven by seven types of actuator modules such as eye, eyebrow, eyelid, brow, cheek, jaw and neck module corresponding to movements of facial muscles. Although they are only part of the whole set of facial motions, our approach is sufficient to generate six fundamental facial expressions such as surprise, fear, anger, disgust, sadness, and happiness. Each module communicates with the others via CAN communication protocol fur the desired emotional expressions, the facial motions are generated by combining the motions of each actuator module. A prototype of the robot has been developed and several experiments have been conducted to validate its feasibility.

EMG-based Real-time Finger Force Estimation for Human-Machine Interaction (인간-기계 인터페이스를 위한 근전도 기반의 실시간 손가락부 힘 추정)

  • Choi, Chang-Mok;Shin, Mi-Hye;Kwon, Sun-Cheol;Kim, Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.132-141
    • /
    • 2009
  • In this paper, we describe finger force estimation from surface electromyogram (sEMG) data for intuitive and delicate force control of robotic devices such as exoskeletons and robotic prostheses. Four myoelectric sites on the skin were found to offer favorable sEMG recording conditions. An artificial neural network (ANN) was implemented to map the sEMG to the force, and its structure was optimized to avoid both under- and over-fitting problems. The resulting network was tested using recorded sEMG signals from the selected myoelectric sites of three subjects in real-time. In addition, we discussed performance of force estimation results related to the length of the muscles. This work may prove useful in relaying natural and delicate commands to artificial devices that may be attached to the human body or deployed remotely.