DOI QR코드

DOI QR Code

Adaptive Pressure Sensor with High Sensitivity and Large Bandwidth Based on Gallium Microdroplet-elastomer Composite

갈륨 미세입자 탄성 복합체 기반 고민감도와 광대역폭을 갖는 가변 강성 압력센서

  • Simok, Lee (School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Sang-Hyuk, Byun (School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Steve, Park (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Joo Yong, Sim (Department of Mechanical Systems Engineering, Sookmyung Women's University) ;
  • Jae-Woong, Jeong (School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 이시목 (한국과학기술원 전기 및 전자공학부) ;
  • 변상혁 (한국과학기술원 전기 및 전자공학부) ;
  • 스티브박 (한국과학기술원 신소재공학과) ;
  • 심주용 (숙명여자대학교 기계시스템학부) ;
  • 정재웅 (한국과학기술원 전기 및 전자공학부)
  • Received : 2022.10.17
  • Accepted : 2022.11.08
  • Published : 2022.11.30

Abstract

A pressure sensor that mimics the sensing ability of human skin has emerged as high-profile technology because it shows remarkable applications in numerous fields such as robotics, human health monitoring, and artificial prosthetics. Whereas recent pressure sensors have achieved high sensitivity similar to that of human skin, they still show limited detection bandwidth. Moreover, once these e-skin are fabricated, their sensitivity and stiffness are fixed; therefore, they can be used for only limited applications. Our study proposes a new adaptive pressure sensor built with uniform gallium microdroplet-elastomer composite. Based on the phase transition of gallium microdroplets, the proposed sensor undergoes mode transformation, enabling it to have a higher sensitivity and wider detection bandwidth compared with those of human skin. In addition, we succeeded in extending a single adaptive pressure sensor to sensor arrays based on its high uniformity, reproducibility, and large-scale manufacturability. Finally, we designed an adaptive e-skin with the sensor array and demonstrated its applications on health monitoring tasks including blood pulse and body weight measurements.

Keywords

References

  1. M. L. Hammock, A. Chortos, B. C, K. Tee, J. B. H. Tok, and Z. Bao, "The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress", Adv. Mater., Vol. 25, No. 42, pp. 5997-6038, 2013. https://doi.org/10.1002/adma.201302240
  2. M. I. Svechtarova, I. Buzzacchera, B. J. Toebes, J. Lauko, N. Anton, and C. J. Wilson, "Sensor Devices Inspired by the Five Senses: A Review", Electroanalysis, Vol. 28, No. 6, pp. 1201-1241, 2016. https://doi.org/10.1002/elan.201600047
  3. Y. H. Jung, B. Park, J. U. Kim, and T. Kim, "Bioinspired Electronics for Artificial Sensory Systems", Adv. Mater., Vol. 31, No. 34, p. 1803637, 2018.
  4. B. Morillon, T. A. Hackett, Y. Kajikawa, and C. E. Schroeder, "Predictive motor control of sensory dynamics in auditory active sensing", Curr. Opin. Neurobio., Vol. 31, pp. 230-238, 2015. https://doi.org/10.1016/j.conb.2014.12.005
  5. P. L. Alvaro, "Retinotopic visual cortex mapping using a visual-to-auditory sensory-substitution device", Front. Hum. Neurosci., Vol. 2, 2015.
  6. J. C. Yang, J. Mun, S. Y. Kwon, S. Park, Z. Bao, and S. Park, "Electronic Skin: Electronic Skin: Recent Progress and Future Prospects for Skin?Attachable Devices for Health Monitoring, Robotics, and Prosthetics", Adv. Mater., Vol. 31, No. 48, p. 1970337, 2019.
  7. S. R. A. Ruth, V. R. Feig, H. Tran, and Z. Bao, "Micro-engineering Pressure Sensor Active Layers for Improved Performance", Adv. Funct. Mater., Vol. 30, No. 39, p. 2003491, 2020.
  8. Y. Wan, Z. Qiu, Y. Hong, Y. Wang, J. Zhang, Q. Liu, Z. Wu, and C. F. Guo, "A Highly Sensitive Flexible Capacitive Tactile Sensor with Sparse and High-Aspect-Ratio Microstructures", Adv. Electron. Mater., Vol. 4, No. 4, pp. 1700586, 2018.
  9. S. C. B. Mannsfeld, B. C. K. Tee, R. M. Stoltenberg, C. V. H. H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, "Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers", Nat. Mater., Vol. 9, No. 10, pp. 859-864, 2010. https://doi.org/10.1038/nmat2834
  10. S. R. A. Ruth, L. Beker, H. Tran, V. R. Feig, N. Matsuhisa, and Z. Bao, "Rational Design of Capacitive Pressure Sensors Based on Pyramidal Microstructures for Specialized Monitoring of Biosignals", Adv. Funct. Mater., Vol. 30, No. 29, p. 1903100, 2019.
  11. J. C. Yang, J. O. Kim, J. Oh, S. Y. Kwon, J. Y. Sim, D. W. Kim, H. B. Choi, and S. Park, "Microstructured Porous Pyramid-Based Ultrahigh Sensitive Pressure Sensor Insensitive to Strain and Temperature", ACS Appl. Mater. Interfaces, Vol. 11, No. 21, pp. 19472-19480, 2019. https://doi.org/10.1021/acsami.9b03261
  12. L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt, and Z. Bao, "An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film", Nat. Commun., Vol. 5, No. 1, pp. 1-8, 2014.
  13. H. Tian, Y. Shu, X. F. Wang, M. A. Mohammad, Z. Bie, Q. Y. Xie, C. Li, W. T. Mi, Y. Yang, and T. L. Ren, "A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range", Sci. Rep., Vol. 5, No. 1, pp. 1-6, 2015.
  14. K. Parida, V. Bhavanasi, V. Kumar, R. Bendi, and P. S. Lee, "Self-powered pressure sensor for ultra-wide range pressure detection", Nano Res., Vol. 10, No. 10, pp. 3557-3570, 2017. https://doi.org/10.1007/s12274-017-1567-6
  15. H. Jing, L. Xu, X. Wang, Y. Liu, J. and Hao, J., "A phase-change gel based pressure sensor with tunable sensitivity for artificial tactile feedback systems", Mater. Chem. A, Vol. 9, No. 35, pp. 19914-19921, 2021. https://doi.org/10.1039/D1TA02791C
  16. S. H. Byun, J. Y. Sim, Z. Zhou, J. Lee, R. Qazi, M. C. Walicki, K. E. Parker, M. P. Haney, S. H. Choi, A. Shon, G. B. Gereau, J. Bilbily, S. Li, Y. Liu, W. H. Yeo, J. G. McCall, J. Xiao, and J. W. Jeong, "Mechanically transformative electronics, sensors, and implantable devices", Sci. Adv., Vol. 5, No. 11, p. eaay0418, 2019.
  17. T. Shao, J. Wu, Y. Zhang, Y. Cheng, Z. Zuo, H. Lv, M. Ying, C. P. Wong, and Z. Li, "Highly Sensitive Conformal Pressure Sensing Coatings Based on Thermally Expandable Microspheres", Adv. Mater. Technol., Vol. 5, No. 5, p. 2000032, 2020.