Browse > Article
http://dx.doi.org/10.5423/PPJ.2006.22.1.063

Transmission of Apple scar skin viroid by Grafting, Using Contaminated Pruning Equipment, and Planting Infected Seeds  

Kim, Hyun-Ran (Dept. of Horticultural Environment, National Horticultural Research Institute (NHRI), Rural Development Administration (RDA))
Lee, Sin-Ho (Dept. of Horticultural Environment, National Horticultural Research Institute (NHRI), Rural Development Administration (RDA))
Lee, Dong-Hyuk (Apple Experimental Station, NHRI, RDA)
Kim, Jeong-Soo (Dept. of Horticultural Environment, National Horticultural Research Institute (NHRI), Rural Development Administration (RDA))
Park, Jin-Woo (National Institute of Agricultural Science and Technology, RDA)
Publication Information
The Plant Pathology Journal / v.22, no.1, 2006 , pp. 63-67 More about this Journal
Abstract
Apple scar skin, one of the most destructive diseases affecting apple, is caused by Apple scar skin viroid (ASSV d). Fruit dappling appeared on several cultivars in Korea and has been distributed to major cultivated areas since 2001. ASSVd was identified from infected fruits by using nucleic acid sequence-based amplification with electrochemiluminescence (NASBA-ECL). NASBA-ECL method was faster and hundredfold more sensitive than reverse transcription-polymerase chain reaction (RT-PCR) for ASSVd detection in apple leaves/ stems. ASSVd was rapidly transmitted to the entire tree in the second year after artificial inoculation. The ASSVd could be transmitted efficiently by using contaminated pruning scissors to both lignified stems (60 to $70\%$) and green shoots (20 to $40\%$) of apple tree and young plants. Dipping of contaminated scissors in $2\%$ sodium hypochlorite solution effectively prevented viroid transmission. In the ASSV d-infected fruits, the viroid was easily detected from fruit skin, seed coat, and embryo. Moreover, embryo and endosperm separately excised from the ASSVd-infected seeds were ASSVd positive in NASBA-ECL assay. Seedlings germinated from ASSVd-positive seeds showed $7.7\%$ infection rate., which indicated that ASSVd is seed-borne.
Keywords
Apple scar skin viroid; grafting inoculation; NASBA-ECL; seed-borne; seed transmission;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hadidi, A., Hansen, A. J., Parish, C. L. and Yang, X. 1991. Scar skin and dapple apple viroids are seed-borne and persistent in infected apple trees. Res. Virol. 142:289-296   DOI   ScienceOn
2 Wah, Y. F. W. C. and Symons, R. H. 1999. Transmission of Viroids via Grape Seeds. J. Phytopathol. 147:285-291   DOI
3 Kim, H. R., Lee, S. H., Kim, J. S., Yiem, M. S., Kim, C. G, Park, J. W., Chung, J. D. and Shin, Y. B. 2004. Detection of Apple scar skin viroid in apple trees by the isothermal nucleic acid amplification and electrochemiluminescence. Acta Hortic. 657:361-366
4 Greene, S. R., Moe, C. L., Jaykus, L. A., Cronin, M., Grosso, L. and van Aarle, P. 2003. Evaluation of the NucliSens basic kit assay for detection of Norwalk virus RNA in stool specimens. J. Virol. Methods 108:123-131   DOI   ScienceOn
5 Sano, T., Hataya, T., Terai, Y. and Shikata, E. 1989. Hop stunt viroid strains from dapple fruit plum and peach in Japan. J. Gen. Virol. 70:1311-1319   DOI   ScienceOn
6 Lee, J. H., Park, J. K., Lee, D. H., Uhm, J. Y., Ghim, S. Y. and Lee, J. Y. 2001. Occurrence of Apple scar skin viroid-Korean strain (ASSVd-K) in apples cultivated in Korea. Plant Pathol. J. 17:300-304
7 Kwon, M. J., Hwang, S. L., Lee, S. J., Lee, D. H. and Lee, J. Y. 2002. Detection and distribution of the Apple scar skin viroid-Korean strain (ASSVd-K) from apples cultivated in Korea. Korean J. Plant Pathol. 18:342-344   DOI   ScienceOn
8 Flores, R., Hermandez, C., Avinent, L., Hermoso, A., Llacer, G, Juarez, J., Arregui, J. H., Nvurro, L. and Desvignes, J. C. 1992. Studies on the detection, transmission, and distribution of peach latent mosaic viroid in peach trees. Acta Hortic. 309:325-330
9 Roistacher, C. N., Calavan, E. C. and Blue, R. L. 1969. Citrus exocortis virus-chemical inactivation on tools, tolerance to heat and separation of isolates. Plant Dis. Rep. 53:333-336
10 Koganezawa, H. 1985. Transmission to apple seedling of low molecular weight RNA from apple scar skin-diseased trees. Ann. Phytopathol. Soc. Jpn. 51: 176-182   DOI
11 Hashimoto, J. and Koganezawa, H. 1987. Nucleotide sequence and secondary structure of apple scar skin viroid. Nucl. Acids Res. 15:7045-7052   DOI
12 Zhu, S. F., Hadidi, A., Hammond, R. W., Yang, X. and Hansen, J. A. 1995. Nucleotide sequence and secondary structure of pome fruit viroids from dapple apple diseased apples, pear rusty skin diseased pears, and apple scar skin symptomless pears. Acta Hortic. 386:554-559
13 Goossens, V. J., Blok, M. J., Christiaans, M. H., Sillekens, P., Middeldorp, J. M. and Bruggeman, C. A. 2000. Early detection of cytomegalovirus in renal transplant recipients: Comparison of PCR, NASBA, pp65 antigenemia, and viral culture. Transplant Proc. 32: 155-158
14 Kegler, G and Schimanski, H. H. 1982. Investigations on the spread and seed transmissibility of tomato bushy stunt virus in pome and stone fruit in the GDR. Archiv fur Phytopathologie und Pflanzenschutz 18: 105-109   DOI
15 Lunel, F., Cresta, P., Vitour, D., Paya, C., Dumont, B., Frangeul, L., Reboul, D., Brault, C., Piette, J. C. and Huraux, J. M. 1999. Comparative evaluation of hepatitis C virus RNA quantitation by branched DNA, NASBA, and monitor assays. Hepatology 29:528-535   DOI   ScienceOn
16 Sooknanan, R. and Malek, L. T. 1995. NASBA: A detection and amplification system uniquely suited for RNA. Bio/Technology 13:563-564   DOI
17 Boom, R., Sol, C. J. A., Salimans, M. M. M., Jansen, C. L., Wertheim-van Dillen, P. M. E. and van der Nordaa, J. 1990. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28:495-503
18 Desvignes, J. C., Grasseau, N., Boye, R., Cornaggia, D., Aparicio, F., DiSerio, F. and Flores, R. 1999. Biological properties of apple scar skin viroid: isolates, host range, different sensitivity of apple cultivars, elimination, and natural transmission. Plant Dis. 83:768-772   DOI
19 Kievits, T., Van Gemen, B., Van Strijp, D., Schukkink, R., Dirks, M., Adriaanse, H., Malek, L., Sooknanan, R. and Lens, P. 1991. NASBA isothermal enzymatic in vitro nucleic acid amplification optimized for HIV-1 diagnosis. J. Virol. Methods 35:273-286   DOI   ScienceOn
20 Kyriakoum A. 1992. Incidence in Cyprus of Citrus exocortis viroid and its mechanical transmission. Plant Pathol. 41 :20-24   DOI
21 Wallace, J. M. and Drake, R. J. 1962. A high rate of seed transmission of avocado sun-blotch virus from symptomless trees and the origin of such trees. Phytopathology 52:237-241
22 Howell, W. E., Skrzeczkowski, L. J., Wessels, T., Mink, G. I. and Nunez, A.. 1998. Non-transmission of Apple scar skin viroid and Peach latent mosaic viroid through seed. Acta Hortic. 472:635-639
23 Dodds, J. A., Mathews, D., Arpaia, M. L. and Witney, G W. 1987. Recognizing Avocado sunblotch disease. AvoResearch, California Avocado Commission
24 Hurtt, S. S. and Podleckis, E. V. 1995. Apple scar skin viroid is not seed transmitted or transmitted at a low rate in oriental peat. Acta Hortic. 386:544-550
25 Diener, T. O. 1987. The Viroids, Plenum Press, New York and London
26 Hadidi, A., Giunchedi, L., Poggi-Pollini, C. and Amer, M. A. 1996. Occurrence of Peach latent mosaic viroid in stone fruits and its transmission with contaminated blades. Plant Dis. 81:154-158   DOI   ScienceOn
27 Diserio, F., Aparicio, F., Alioto, D., Ragozzino, A. and Flores, R. 1996. Identification and molecular properties of a 306-nucleotide viroid associated with apple dimple fruit disease. J. Gen. Virol. 77:2833-2837   DOI   ScienceOn