• Title/Summary/Keyword: Artificial noise

검색결과 445건 처리시간 0.027초

생체 모방 종이 작동기의 면내 변형에 관한 연구 (Study on In-plane Strains of Electro-Active Paper)

  • 정우철;김재환;이선곤;배성훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.727-730
    • /
    • 2005
  • Cellulose based Electro-Active Papers (EAPap) is very promising material due to its merits in terms of large bending deformation, low actuation voltage, ultra-lightweight, and biodegradability. These advantages make it possible to utilize applications, such as artificial muscles and achieving flapping wings, micro-insect robots and smart wall papers. This paper investigates the in-plane strains of EAPap under electric fields, which are useful for a contractile actuator application The preparation of EAPap samples and the in-plane strain measurement system are explained, and the test results are shown in terms of electric field, frequency and the oriental ions of the samples. The power consumption and the strain energy of EAPap samples are discussed. Although there are still unknown facts in EAPap material, this in-plane strain may be useful for artificial muscle applications.

  • PDF

수중 소나 영상 학습 데이터의 왜곡 및 회전 Augmentation을 통한 딥러닝 기반의 마커 검출 성능에 관한 연구 (Study of Marker Detection Performance on Deep Learning via Distortion and Rotation Augmentation of Training Data on Underwater Sonar Image)

  • 이언호;이영준;최진우;이세진
    • 로봇학회논문지
    • /
    • 제14권1호
    • /
    • pp.14-21
    • /
    • 2019
  • In the ground environment, mobile robot research uses sensors such as GPS and optical cameras to localize surrounding landmarks and to estimate the position of the robot. However, an underwater environment restricts the use of sensors such as optical cameras and GPS. Also, unlike the ground environment, it is difficult to make a continuous observation of landmarks for location estimation. So, in underwater research, artificial markers are installed to generate a strong and lasting landmark. When artificial markers are acquired with an underwater sonar sensor, different types of noise are caused in the underwater sonar image. This noise is one of the factors that reduces object detection performance. This paper aims to improve object detection performance through distortion and rotation augmentation of training data. Object detection is detected using a Faster R-CNN.

CNN based Sound Event Detection Method using NMF Preprocessing in Background Noise Environment

  • Jang, Bumsuk;Lee, Sang-Hyun
    • International journal of advanced smart convergence
    • /
    • 제9권2호
    • /
    • pp.20-27
    • /
    • 2020
  • Sound event detection in real-world environments suffers from the interference of non-stationary and time-varying noise. This paper presents an adaptive noise reduction method for sound event detection based on non-negative matrix factorization (NMF). In this paper, we proposed a deep learning model that integrates Convolution Neural Network (CNN) with Non-Negative Matrix Factorization (NMF). To improve the separation quality of the NMF, it includes noise update technique that learns and adapts the characteristics of the current noise in real time. The noise update technique analyzes the sparsity and activity of the noise bias at the present time and decides the update training based on the noise candidate group obtained every frame in the previous noise reduction stage. Noise bias ranks selected as candidates for update training are updated in real time with discrimination NMF training. This NMF was applied to CNN and Hidden Markov Model(HMM) to achieve improvement for performance of sound event detection. Since CNN has a more obvious performance improvement effect, it can be widely used in sound source based CNN algorithm.

프린터 소음에 대한 감성소음 평가 시스템 개발 (Development of Sound Quality Evaluation System for a Printer Noise Based on Human Sensibility)

  • 박상원;이현호;나은우;이상권;박영재;김종우
    • 한국소음진동공학회논문집
    • /
    • 제20권5호
    • /
    • pp.427-436
    • /
    • 2010
  • The printer sound has many aspects which define its quality because the printer has lots of components and its operation is very complicated. These sound qualities are related to the international competition in printer markets. Recordings inside anechoic chamber were analyzed and a large number of sounds were stimulated using digital signal processing technique. First subjective tests of the printer sound were conducted using semantic different method. By applying factor analysis to the subjective response, two important factors of sound quality were extracted. Second subjective tests were conducted to evaluate the quietness and the impulsiveness of the printer sounds. On the other hand, sound metrics are calculated applying psychoacoustic theories. In this paper, the nonlinear relation between subjective evaluation and sound metrics was identified using artificial neural network and the printer sound quality index was developed. Later, subjective sound quality evaluation will be estimated and evaluated using this index.

Filtering Random Noise from Deterministic Underwater Signals via Application on an Artificial neural Network

  • Na, Young-Nam;Park, Joung-Soo;Choi, Jae-Young;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • 제15권3E호
    • /
    • pp.4-12
    • /
    • 1996
  • In this study, we examine the applicability of an artificial neural network(ANN) for filtering underwater random noise and for identifying underlying signals taken from noisy environment. The approach is to find a way of compressing the input data and then decompressing it using an ANN as in image compressing process. It is well known that random signal is hard to compress while ordered information is not. The use of a limited number of processing elements(PEs) in the hidden layer of an Ann ensures that some of the noise would be removed in the reconstruction process. Two types of the signals, synthesized and measured, are used to examine the effectiveness of the ANN-based filter. After training process is completed, the ANN successfully extracts the underlying signals form the synthesized or measured noisy signals. In particular, compared with the results form without filtering or moving averaged, the ANN-based filter gives much better spectrograms to identify underlying signals from the measured noisy data. This filtering process is achieved without using and kind of highly accurate signal processing technique. More experimentation needs to be followed to develop the ANN-based filtering technique to the level of complete understanding.

  • PDF

파워스펙트럼 및 신경망회로를 이용한 기어박스의 결함진단 및 결함형태 분류에 관한 연구 (Fault Detection and Damage Pattern Analysis of a Gearbox Using the Power Spectra Density and Artificial Neural Network)

  • 이상권
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.537-543
    • /
    • 2003
  • Transient vibration generated by developing localized fault in gear can be used as indicators in gear fault detection. This vibration signal suffers from the background noise such as gear meshing frequency and its harmonics and broadband noise. Thus in order to extract the information about the only gear fault from the raw vibration signal measured on the gearbox this signal is processed to reduce the background noise with many kinds of signal-processing tools. However, these signal-processing tools are often very complex and time waste. Thus. in this paper. we propose a novel approach detecting the damage of gearbox and analyzing its pattern using the raw vibration signal. In order to do this, the residual signal. which consists of the sideband components of the gear meshing frequent) and its harmonics frequencies, is extracted from the raw signal by the power spectral density (PSD) to obtain the information about the fault and is used as the input data of the artificial neural network (ANN) for analysis of the pattern of gear fault. This novel approach has been very successfully applied to the damage analysis of a laboratory gearbox.

웨이브렛변환과 인공신경망 기법을 이용한 소형 왕복동 압축기의 상태 분류 (Classification of Normal/Abnormal Conditions for Small Reciprocating Compressors using Wavelet Transform and Artificial Neural Network)

  • 임동수;안경룡;양보석;안병하
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.796-801
    • /
    • 2000
  • The monitoring and diagnostics of the rotating machinery have been received considerable attention for many years. The objectives are to classify the machinery condition and to find out the cause of abnormal condition. This paper describes a signal classification method for diagnosing the rotating machinery using the artificial neural network and the wavelet transform. In order to extract salient features, the wavelet transform are used from primary noise signals. Since the wavelet transform decomposes raw time-waveform signals into two respective parts in the time space and frequency domain, more and better features can be obtained easier than time-waveform analysis. In the training phase for classification, self-organizing feature map(SOFM) and learning vector quantization(LVQ) are applied, and the accuracies of them are compared with each other. This paper is focused on the development of an advanced signal classifier to automatise the vibration signal pattern recognition. This method is verified by small reciprocating compressors, for refrigerator and normal and abnormal conditions are classified with high flexibility and reliability.

  • PDF

소나 영상을 이용한 확률적 물체 인식 구조 기반 수중로봇의 위치추정 (Underwater Robot Localization by Probability-based Object Recognition Framework Using Sonar Image)

  • 이영준;최진우;최현택
    • 로봇학회논문지
    • /
    • 제9권4호
    • /
    • pp.232-241
    • /
    • 2014
  • This paper proposes an underwater localization algorithm using probabilistic object recognition. It is organized as follows; 1) recognizing artificial objects using imaging sonar, and 2) localizing the recognized objects and the vehicle using EKF(Extended Kalman Filter) based SLAM. For this purpose, we develop artificial landmarks to be recognized even under the unstable sonar images induced by noise. Moreover, a probabilistic recognition framework is proposed. In this way, the distance and bearing of the recognized artificial landmarks are acquired to perform the localization of the underwater vehicle. Using the recognized objects, EKF-based SLAM is carried out and results in a path of the underwater vehicle and the location of landmarks. The proposed localization algorithm is verified by experiments in a basin.

Image Enhanced Machine Vision System for Smart Factory

  • Kim, ByungJoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.7-13
    • /
    • 2021
  • Machine vision is a technology that helps the computer as if a person recognizes and determines things. In recent years, as advanced technologies such as optical systems, artificial intelligence and big data advanced in conventional machine vision system became more accurate quality inspection and it increases the manufacturing efficiency. In machine vision systems using deep learning, the image quality of the input image is very important. However, most images obtained in the industrial field for quality inspection typically contain noise. This noise is a major factor in the performance of the machine vision system. Therefore, in order to improve the performance of the machine vision system, it is necessary to eliminate the noise of the image. There are lots of research being done to remove noise from the image. In this paper, we propose an autoencoder based machine vision system to eliminate noise in the image. Through experiment proposed model showed better performance compared to the basic autoencoder model in denoising and image reconstruction capability for MNIST and fashion MNIST data sets.