• Title/Summary/Keyword: Artificial neuron network

Search Result 46, Processing Time 0.028 seconds

A Study on Automatic Design of Artificial Meural Networks using Cellular Automata Techniques (샐룰라 오토마타 기법을 이용한 신경망의 자동설계에 관한 연구)

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.88-95
    • /
    • 1998
  • This paper is the result of constructing information processing system such as living creatures' brain based on artificial life techniques. The living things are best information processing system in themselves. One individual is developed from a generative cell. And a species of this individual has adapted itself to the environment through evolution. In this paper, we propose a new method of designing neural networks using biological inspired developmental and evolutionary concept. Ontogeny of organism is embodied in cellular automata(CA) and phylogeny of species is realized by evolutionary algorithms(EAs). We call 'Evolving Cellular Automata Neural Systems' as ECANSI. The connection among cells is determined by the rule of cellular automata. In order to obtain the best neural networks in given environment, we evolve the arragemetn of initial cells. The cell, that is a neuron of neural networks, is modeled on chaotic neuron with firing or rest state like biological neuron. A final output of network is measured by frequency of firing state. The effectiveness of the proposed scheme is verified by applying it to Exclusive-OR and parity problem.

  • PDF

Performance of Cu-SiO2 Aerogel Catalyst in Methanol Steam Reforming: Modeling of hydrogen production using Response Surface Methodology and Artificial Neuron Networks

  • Taher Yousefi Amiri;Mahdi Maleki-Kakelar;Abbas Aghaeinejad-Meybodi
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.328-339
    • /
    • 2023
  • Methanol steam reforming (MSR) is a promising method for hydrogen supplying as a critical step in hydrogen fuel cell commercialization in mobile applications. Modelling and understanding of the reactor behavior is an attractive research field to develop an efficient reformer. Three-layer feed-forward artificial neural network (ANN) and Box-Behnken design (BBD) were used to modelling of MSR process using the Cu-SiO2 aerogel catalyst. Furthermore, impacts of the basic operational variables and their mutual interactions were studied. The results showed that the most affecting parameters were the reaction temperature (56%) and its quadratic term (20.5%). In addition, it was also found that the interaction between temperature and Steam/Methanol ratio is important on the MSR performance. These models precisely predict MSR performance and have great agreement with experimental results. However, on the basis of statistical criteria the ANN technique showed the greater modelling ability as compared with statistical BBD approach.

Nonlinear QSAR Study of Xanthone and Curcuminoid Derivatives as α-Glucosidase Inhibitors

  • Saihi, Youcef;Kraim, Khairedine;Ferkous, Fouad;Djeghaba, Zeineddine;Azzouzi, Abdelkader;Benouis, Sabrina
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1643-1650
    • /
    • 2013
  • A non linear QSAR model was constructed on a series of 57 xanthone and curcuminoide derivatives as ${\alpha}$-glucosidase inhibitors by back-propagation neural network method. The neural network architecture was optimized to obtain a three-layer neural network, composed of five descriptors, nine hidden neurons and one output neuron. A good predictive determination coefficient was obtained (${R^2}_{Pset}$ = 86.7%), the statistical results being better than those obtained with the same data set using a multiple regression analysis (MLR). As in the MLR model, the descriptor MATS7v weighted by Van der Waals volume was found as the most important independent variable on the ${\alpha}$-glucosidase inhibitory.

Discernment of Android User Interaction Data Distribution Using Deep Learning

  • Ho, Jun-Won
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.143-148
    • /
    • 2022
  • In this paper, we employ deep neural network (DNN) to discern Android user interaction data distribution from artificial data distribution. We utilize real Android user interaction trace dataset collected from [1] to evaluate our DNN design. In particular, we use sequential model with 4 dense hidden layers and 1 dense output layer in TensorFlow and Keras. We also deploy sigmoid activation function for a dense output layer with 1 neuron and ReLU activation function for each dense hidden layer with 32 neurons. Our evaluation shows that our DNN design fulfills high test accuracy of at least 0.9955 and low test loss of at most 0.0116 in all cases of artificial data distributions.

Pattern Classification of the EMG Signals Using Neural Network (신경회로망을 이용한 EMC 신호의 패턴 분류)

  • 최용준;이현관;이승현;강성호;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.402-405
    • /
    • 2000
  • In this paper we propose a method ef pattern classification of the hand movement using EMG signals through Self-organizing feature map. Self-organizing feature map is an artificial neural network which organizes its output neuron through leaning and therefore it can classify input patterns. The raw EMC signals become direct input to the Self-organizing feature map. The simulation and experiment results showed the effectiveness of the classification of EMG signal using the Self-organizing feature map.

  • PDF

Memristor Bridge Synapse-based Neural Network Circuit Design and Simulation of the Hardware-Implemented Artificial Neuron (멤리스터 브리지 시냅스 기반 신경망 회로 설계 및 하드웨어적으로 구현된 인공뉴런 시뮬레이션)

  • Yang, Chang-ju;Kim, Hyongsuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.477-481
    • /
    • 2015
  • Implementation of memristor-based multilayer neural networks and their hardware-based learning architecture is investigated in this paper. Two major functions of neural networks which should be embedded in synapses are programmable memory and analog multiplication. "Memristor", which is a newly developed device, has two such major functions in it. In this paper, multilayer neural networks are implemented with memristors. A Random Weight Change algorithm is adopted and implemented in circuits for its learning. Its hardware-based learning on neural networks is two orders faster than its software counterpart.

Identification of harmonic loads using neural network (신경회로망을 이용한 고조파 부하의 식별)

  • Hwang, C.S.;Shim, J.S.;Kim, D.W.;Kim, M.S.;Choi, J.L.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.235-237
    • /
    • 1993
  • Semiconductor devices generate harmonics which induced bad effects against power distribution systems. To surpress harmonics, the filter design and the identification of harmonic load sources are needed. In this paper, artificial neural networks are used to identify the nonlinear relationship between harmonic loads and harmonic currents that vary at times. To find the best adequate network for solving this identification problem, we compared with recognition rates of neural networks by changing hidden layer neuron number.

  • PDF

A Neural Network Aided Kalman Filtering Approach for SINS/RDSS Integrated Navigation

  • Xiao-Feng, He;Xiao-Ping, Hu;Liang-Qing, Lu;Kang-Hua, Tang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.491-494
    • /
    • 2006
  • Kalman filtering (KF) is hard to be applied to the SINS (Strap-down Inertial Navigation System)/RDSS (Radio Determination Satellite Service) integrated navigation system directly because the time delay of RDSS positioning in active mode is random. BP (Back-Propagation) Neuron computing as a powerful technology of Artificial Neural Network (ANN), is appropriate to solve nonlinear problems such as the random time delay of RDSS without prior knowledge about the mathematical process involved. The new algorithm betakes a BP neural network (BPNN) and velocity feedback to aid KF in order to overcome the time delay of RDSS positioning. Once the BP neural network was trained and converged, the new approach will work well for SINS/RDSS integrated navigation. Dynamic vehicle experiments were performed to evaluate the performance of the system. The experiment results demonstrate that the horizontal positioning accuracy of the new approach is 40.62 m (1 ${\sigma}$), which is better than velocity-feedback-based KF. The experimental results also show that the horizontal positioning error of the navigation system is almost linear to the positioning interval of RDSS within 5 minutes. The approach and its anti-jamming analysis will be helpful to the applications of SINS/RDSS integrated systems.

  • PDF

VLSI Implementation of Hopfield Network using Correlation (상관관계를 이용한 홉필드 네트웍의 VLSI 구현)

  • O, Jay-Hyouk;Park, Seong-Beom;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.254-257
    • /
    • 1993
  • This paper presents a new method to implement Hebbian learning method on artificial neural network. In hebbian learning algorithm, complexity in terms of multiplications is high. To save the chip area, we consider a new learning circuit. By calculating similarity, or correlation between $X_i$ and $O_i$, large portion of circuits commonly used in conventional neural networks is not necessary for this new hebbian learning circuit named COR. The output signals of COR is applied to weight storage capacitors for direct control the voltages of the capacitors. The weighted sum, ${\Sigma}W_{ij}O_j$, is realized by multipliers, whose output currents are summed up in one line which goes to learning circuit or output circuit. The drain current of the multiplier can produce positive or negative synaptic weights. The pass transistor selects eight learning mode or recall mode. The layout of an learnable six-neuron fully connected Hopfield neural network is designed, and is simulated using PSPICE. The network memorizes, and retrieves the patterns correctly under the existence of minor noises.

  • PDF

Face Tracking Method based on Neural Oscillatory Network Using Color Information (컬러 정보를 이용한 신경 진동망 기반 얼굴추적 방법)

  • Hwang, Yong-Won;Oh, Sang-Rok;You, Bum-Jae;Lee, Ji-Yong;Park, Mig-Non;Jeong, Mun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.40-46
    • /
    • 2011
  • This paper proposes a real-time face detection and tracking system that uses neural oscillators which can be applied to access regulation system or control systems of user authentication as well as a new algorithm. We study a way to track faces using the neural oscillatory network which imitates the artificial neural net of information handing ability of human and animals, and biological movement characteristic of a singular neuron. The system that is suggested in this paper can broadly be broken into two stages of process. The first stage is the process of face extraction, which involves the acquisition of real-time RGB24bit color video delivering with the use of a cheap webcam. LEGION(Locally Excitatory Globally Inhibitory)algorithm is suggested as the face extraction method to be preceded for face tracking. The second stage is a method for face tracking by discovering the leader neuron that has the greatest connection strength amongst neighbor neuron of extracted face area. Along with the suggested method, the necessary element of face track such as stability as well as scale problem can be resolved.