• Title/Summary/Keyword: Artificial neural Network

Search Result 3,137, Processing Time 0.034 seconds

Evaluation of Thermal Embrittlement Susceptibility in Cast Austenitic Stainless Steel Using Artificial Neural Network (인공신경망을 이용한 주조 스테인리스강의 열취화 민감도 평가)

  • Kim, Cheol;Park, Heung-Bae;Jin, Tae-Eun;Jeong, Ill-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1174-1179
    • /
    • 2003
  • Cast austenitic stainless steel is used for several components, such as primary coolant piping, elbow, pump casing and valve bodies in light water reactors. These components are subject to thermal aging at the reactor operating temperature. Thermal aging results in spinodal decomposition of the delta-ferrite leading to increased strength and decreased toughness. This study shows that ferrite content can be predicted by use of the artificial neural network. The neural network has trained learning data of chemical components and ferrite contents using backpropagation learning process. The predicted results of the ferrite content using trained neural network are in good agreement with experimental ones.

  • PDF

Proposed Neural Network Approach for Monitoring Plant Status in Korean Next Generation Reactors

  • Varde, P.V.;Hur, Seop;Lee, D.Y.;Moon, B.S.;Han, J.B.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.112-120
    • /
    • 2003
  • This paper reports the development work carried out in respect of a proposed application of Neural Network approach for the Korean Next generation Reactor (KNGR) now referred as APR-1400. The emphasis is on establishing the methodology and the approach to be adopted towards realizing this application in the next generation reactors. Keeping in view the advantages and limitation of Artificial Neural Network Approach, the role of ANN has been limited to plant status or to be more precise plant transient monitoring. The simulation work carried out so far and the results obtained shows that artificial neural network approach caters to the requirements of plant status monitoring and qualifies to be incorporated as a part of proposed operator support systems of the referenced nuclear power plant.

Design of tracking controller Using Artificial Neural Network & comparison with an Optimal Track ing Controller (인공 신경회로망을 이용한 추적 제어기의 구성 및 최적 추적 제어기와의 비교 연구)

  • Park, Young-Moon;Lee, Gue-Won;Choi, Myoen-Song
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.51-53
    • /
    • 1993
  • This paper proposes a design of the tracking controller using artificial neural network and the compare the result with a result of optimal controller. In practical use, conventional Optimal controller has some limits. First, optimal controller can be designed only for linear system. Second, for many systems state observation is difficult or sometimes impossible. But the controller using artificial neural network does not need mathmatical model of the system including state observation, so it can be used for both linear and nonlinear system with no additional cost for nonlinearity. Designed multi layer neural network controller is composed of two parts, feedforward controller gives a steady state input & feedback controller gives transient input via minimizing the quadratic cost function. From the comparison of the results of the simulation of linear & nonlinear plant, the plant controlled by using neural network controller shows the trajectory similar to that of the plant controlled by an optimal controller.

  • PDF

Evaluation of Thermal Embrittlement Susceptibility in Cast Austenitic Stainless Steel Using Artificial Neural Network (인공신경망을 이용한 주조 스테인리스강의 열취화 민감도 평가)

  • Kim, Cheol;Park, Heung-Bae;Jin, Tae-Eun;Jeong, Ill-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.460-466
    • /
    • 2004
  • Cast austenitic stainless steel is used for several components, such as primary coolant piping, elbow, pump casing and valve bodies in light water reactors. These components are subject to thermal aging at the reactor operating temperature. Thermal aging results in spinodal decomposition of the delta-ferrite leading to increased strength and decreased toughness. This study shows that ferrite content can be predicted by use of the artificial neural network. The neural network has trained teaming data of chemical components and ferrite contents using backpropagation learning process. The predicted results of the ferrite content using trained neural network are in good agreement with experimental ones.

Back-bead Prediction and Weldability Estimation Using An Artificial Neural Network (인공신경망을 이용한 이면비드 예측 및 용접성 평가)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.79-86
    • /
    • 2007
  • The shape of excessive penetration mainly depends on welding conditions(welding current and welding voltage), and welding process(groove gap and welding speed). These conditions are the major affecting factors to width and height of back bead. In this paper, back-bead prediction and weldability estimation using artificial neural network were investigated. Results are as follows. 1) If groove gap, welding current, welding voltage and welding speed will be previously determined as a welding condition, width and height of back bead can be predicted by artificial neural network system without experimental measurement. 2) From the result applied to three weld quality levels(ISO 5817), both experimented measurement using vision sensor and predicted mean values by artificial neural network showed good agreement. 3) The width and height of back bead are proportional to groove gap, welding current and welding voltage, but welding speed. is not.

Development and application of artificial neural network for landslide susceptibility mapping and its verfication at Janghung, Korea

  • Yu, Young-Tae;Lee, Moung-Jin;Won, Joong-Sun
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.77-82
    • /
    • 2003
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural network and to apply the developed techniques to the study area of janghung in Korea. Landslide locations were identified in the study area from interpretation of satellite image and field survey data, and a spatial database of the topography, soil, forest and land use were consturced. The 13 landslide-related factors were extracted from the spatial database. Using those factors, landslide susceptibility was analyzed by artificial neural network methods, and the susceptibility map was made with a e15 program. For this, the weights of each factor were determinated in 5 cases by the backpropagation method, which is a type of artificial neural network method. Then the landslide susceptibility indexes were calculated using the weights and the susceptibility maps were made with a GIS to the 5 cases. A GIS was used to efficiently analyze the vast amount of data, and an artificial neural network was turned out be an effective tool to analyze the landslide susceptibility.

  • PDF

The prediction of fatigue life of muffler by artificial neural network (인공신경망을 이용한 머플러의 피로 수명 예측)

  • Park, Soon-Cheol;Kang, Sung-Su;Yoon, Jin-Ho;Kim, Gug-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.869-876
    • /
    • 2013
  • In order to estimate the fatigue life of mufflers at the early stage of researches and designs, the new prediction process was developed by the artificial neural network, which has the algorism of weldment properties. Bending fatigue test was carried out for defining the characteristics of muffler weldment fatigue life and damage. For considering and predicting mechanical and fatigue properties of the muffler, the maximum stress of weldment was adapted as the variable of artificial neural network training. Also, it was compared with the fatigue life predicting results using fatigue notch factors, for proving the newly developed process of the artificial neural network.

Development of Integrated Control Methods for the Heating Device and Surface Openings based on the Performance Tests of the Rule-Based and Artificial-Neural-Network-Based Control Logics (난방시스템 및 개구부의 통합제어를 위한 규칙기반제어법 및 인공신경망기반제어법의 성능비교)

  • Moon, Jin Woo
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.97-103
    • /
    • 2014
  • This study aimed at developing integrated logic for controlling heating device and openings of the double skin facade buildings. Two major logics were developed-rule-based control logic and artificial neural network based control logic. The rule based logic represented the widely applied conventional method while the artificial neural network based logic meant the optimal method. Applying the optimal method, the predictive and adaptive controls were feasible for supplying the advanced thermal indoor environment. Comparative performance tests were conducted using the numerical computer simulation tools such as MATLAB (Matrix Laboratory) and TRNSYS (Transient Systems Simulation). Analysis on the test results in the test module revealed that the artificial neural network-based control logics provided more comfortable and stable temperature conditions based on the optimal control of the heating device and opening conditions of the double skin facades. However, the amount of heat supply to the indoor space by the optimal method was increased for the better thermal conditioning. The number of on/off moments of the heating device, on the other hand, was significantly reduced. Therefore, the optimal logic is expected to beneficial to create more comfortable thermal environment and to potentially prevent system degradation.

Author Identification Using Artificial Neural Network (Artificial Neural Network를 이용한 논문 저자 식별)

  • Jung, Jisoo;Yoon, Ji Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.5
    • /
    • pp.1191-1199
    • /
    • 2016
  • To ensure the fairness, journal reviewers use blind-review system which hides the author information of the journal. Even though the author information is blinded, we could identify the author by looking at the field of the journal or containing words and phrases in the text. In this paper, we collected 315 journals of 20 authors and extracted text data. Bag-of-words were generated after preprocessing and used as an input of artificial neural network. The experiment shows the possibility of circumventing the blind review through identifying the author of the journal. By the experiment, we demonstrate the limitation of the current blind-review system and emphasize the necessity of robust blind-review system.

An Experimental Investigation of the Application of Artificial Neural Network Techniques to Predict the Cyclic Polarization Curves of AL-6XN Alloy with Sensitization

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.62-68
    • /
    • 2021
  • Artificial neural network techniques show an excellent ability to predict the data (output) for various complex characteristics (input). It is primarily specialized to solve nonlinear relationship problems. This study is an experimental investigation that applies artificial neural network techniques and an experimental design to predict the cyclic polarization curves of the super-austenitic stainless steel AL-6XN alloy with sensitization. A cyclic polarization test was conducted in a 3.5% NaCl solution based on an experimental design matrix with various factors (degree of sensitization, temperature, pH) and their levels, and a total of 36 cyclic polarization data were acquired. The 36 cyclic polarization patterns were used as training data for the artificial neural network model. As a result, the supervised learning algorithms with back-propagation showed high learning and prediction performances. The model showed an excellent training performance (R2=0.998) and a considerable prediction performance (R2=0.812) for the conditions that were not included in the training data.