• Title/Summary/Keyword: Artificial neural Network

Search Result 3,137, Processing Time 0.033 seconds

Nonlinear Compensation Using Artificial Neural Network in Radio-over-Fiber System

  • Najarro, Andres Caceres;Kim, Sung-Man
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • In radio-over-fiber (RoF) systems, nonlinear compensation is very important to meet the error vector magnitude (EVM) requirement of the mobile network standards. In this study, a nonlinear compensation technique based on an artificial neural network (ANN) is proposed for RoF systems. This technique is based on a backpropagation neural network (BPNN) with one hidden layer and three neuron units in this study. The BPNN obtains the inverse response of the system to compensate for nonlinearities. The EVM of the signal is measured by changing the number of neurons and the hidden layers in a RoF system modeled by a measured data. Based on our simulation results, it is concluded that one hidden layer and three neuron units are adequate for the RoF system. Our results showed that the EVMs were improved from 4.027% to 2.605% by using the proposed ANN compensator.

A Efficient Rule Extraction Method Using Hidden Unit Clarification in Trained Neural Network (인공 신경망에서 은닉 유닛 명확화를 이용한 효율적인 규칙추출 방법)

  • Lee, Hurn-joo;Kim, Hyeoncheol
    • The Journal of Korean Association of Computer Education
    • /
    • v.21 no.1
    • /
    • pp.51-58
    • /
    • 2018
  • Recently artificial neural networks have shown excellent performance in various fields. However, there is a problem that it is difficult for a person to understand what is the knowledge that artificial neural network trained. One of the methods to solve these problems is an algorithm for extracting rules from trained neural network. In this paper, we extracted rules from artificial neural networks using ordered-attribute search(OAS) algorithm, which is one of the methods of extracting rules, and analyzed result to improve extracted rules. As a result, we have found that the distribution of output values of the hidden layer unit affects the accuracy of rules extracted by using OAS algorithm, and it is suggested that efficient rules can be extracted by binarizing hidden layer output values using hidden unit clarification.

Prediction of Turbidity in Treated Water and the Estimation of the Optimum Feed Concentration of Coagulants in Rapid Mixing Process using an Artificial Neural Network Model (인공신경망 모형을 이용한 급속혼화공정에서 적정 응집제 주입농도 결정 및 응집처리후 탁도의 예측)

  • Jeong, Dong-Hwan;Park, Kyoohong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.21-28
    • /
    • 2005
  • The training and prediction modeling using an artificial neural network was implemented to predict the turbidity of treated water as well as to estimate the optimized feed concentration of polyaluminium chloride (PACl) in a water treatment plant. The parameters used in the input layers were pH, temperature, turbidity and alkalinity, while those in output layers were PACl and turbidity of treated water. Levenberg-Marquadt method of feedforward back-propagation perceptron in the neural network toolbox of MATLAB program was used in this study. Correlation coefficients of the training data with the measured data were 0.9997 for PACl and 0.6850 for turbidity and those of the testing data with measured data were 0.9140 for PACl and 0.3828 for turbidity, when four parameters at input layer, 12-12 nodes each at both the first and the second hidden layers, and two parameters(PACl and turbidity) at output layer were used. Although the predictability of PACl was improved, compared to that of the previous studies to use the only coagulant dose as output layer, turbidity in treated water could not be predicted well. Acquisition of more data through several years obtained with the advanced on-line measuring system could make the artificial neural network useful and practical in actual water treatment plants.

A Study on Prediction of Attendance in Korean Baseball League Using Artificial Neural Network (인경신경망을 이용한 한국프로야구 관중 수요 예측에 관한 연구)

  • Park, Jinuk;Park, Sanghyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.12
    • /
    • pp.565-572
    • /
    • 2017
  • Traditional method for time series analysis, autoregressive integrated moving average (ARIMA) allows to mine significant patterns from the past observations using autocorrelation and to forecast future sequences. However, Korean baseball games do not have regular intervals to analyze relationship among the past attendance observations. To address this issue, we propose artificial neural network (ANN) based attendance prediction model using various measures including performance, team characteristics and social influences. We optimized ANNs using grid search to construct optimal model for regression problem. The evaluation shows that the optimal and ensemble model outperform the baseline model, linear regression model.

Real-time Artificial Neural Network for High-dimensional Medical Image (고차원 의료 영상을 위한 실시간 인공 신경망)

  • Choi, Kwontaeg
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.637-643
    • /
    • 2016
  • Due to the popularity of artificial intelligent, medical image processing using artificial neural network is increasingly attracting the attention of academic and industry researches. Deep learning with a convolutional neural network has been proved to very effective representation of images. However, the training process requires high performance H/W platform. Thus, the realtime learning of a large number of high dimensional samples within low-power devices is a challenging problem. In this paper, we attempt to establish this possibility by presenting a realtime neural network method on Raspberry pi using online sequential extreme learning machine. Our experiments on high-dimensional dataset show that the proposed method records an almost real-time execution.

Prediction of Undrained Shear Strength of Normally Consolidated Clay with Varying Consolidation Pressure Ratios Using Artificial Neural Networks (인공신경회로망을 이용한 압밀응력비에 따른 정규압밀점토의 비배수전단강도 예측)

  • 이윤규;윤여원;강병희
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.75-81
    • /
    • 2000
  • The anisotropy of soils has an important effect on stress-strain behavior. In this study, an attempt has been made to implement artificial neural network model for modeling the stress-strain relationship and predicting the undrained shear strength of normally consolidated clay with varying consolidation pressure ratios. The multi-layer neural network model, adopted in this study, utilizes the error back-propagation loaming algorithm. The artificial neural networks use the results of undrained triaxial test with various consolidation pressure ratios and different effective vertical consolidation pressure fur learning and testing data. After learning from a set of actual laboratory testing data, the neural network model predictions of the undrained shear strength of the normally consolidated clay are found to agree well with actual measurements. The predicted values by the artificial neural network model have a determination coefficient$(r^2)$ above 0.973 compared with the measured data. Therefore, this results show a positive potential for the applications of well-trained neural network model in predicting the undrained shear strength of cohesive soils.

  • PDF

Artificial Neural Network based Motion Classification Algorithm using Surface Electromyogram (표면 근전도를 이용한 Artificial Neural Network 기반의 동작 분류 알고리즘)

  • Jeong, E.C.;Kim, S.J.;Song, Y.R.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.1
    • /
    • pp.67-73
    • /
    • 2012
  • In this paper, Artificial Neural Network(ANN) based motion classification algorithm is proposed to classify wrist motions using surface electromyograms(sEMG). surface EMGs are obtained from two electrodes placed on the flexor carpi ulnaris muscle and extensor carpi ulnaris muscle of 26 subjects under no strain condition during wrist motions and used to recognize wrist motions such as up, down, left, right, and rest. Feature is extracted from obtained EMG signals in time domain for fast processing and used to classify wrist motions using ANN. DAMV, DASDV, MAV, and RMS were used as features and accuracies of motion classification based on ANN were 98.03% for DAMV, 97.97% for DASDV, 96.95% for MAV, 96.82% for RMS.

  • PDF

Classification of UTI Using RBF and LVQ Artificial Neural Network in Urine Dipstick Screening Test (RBF와 LVQ 인공신경망을 이용한 요(尿) 딥스틱 선별검사에서의 요로감염 분류)

  • Min, Kyoung-Kee;Kang, Myung-Seo;Shin, Ki-Young;Lee, Sang-Sik;Hun, Joung-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.340-347
    • /
    • 2008
  • Dipstick urinalysis is used as a routine test for a screening test of UTI (urinary tract infection) in primary practice because urine dipstick test is simple. The result of dipstick urinalysis brings medical professionals to make a microscopic examination and urine culture for exact UTI diagnosis, therefore it is emphasized on a role of screening test. The objective of this study was to the classification between UTI patients and normal subjects using hybrid neural network classifier with enhanced clustering performance in urine dipstick screening test. In order to propose a classifier, we made a hybrid neural network which combines with RBF layer, summation & normalization layer and L VQ artificial neural network layer. For the demonstration of proposed hybrid neural network, we compared proposed classifier with various artificial neural networks such as back-propagation, RBFNN and PNN method. As a result, classification performance of proposed classifier was able to classify 95.81% of the normal subjects and 83.87% of the UTI patients, total average 90.72% according to validation dataset. The proposed classifier confirms better performance than other classifiers. Therefore the application of such a proposed classifier expect to utilize telemedicine to classify between UTI patients and normal subjects in the future.

Simulation-Based Damage Estimation of Helideck Using Artificial Neural Network (인공 신경망을 사용한 시뮬레이션 기반 헬리데크 손상 추정)

  • Kim, Chanyeong;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.359-366
    • /
    • 2020
  • In this study, a simulation-based damage estimation method for helidecks is proposed using an artificial neural network. The structural members that share a connecting node in the helideck are regarded as a damage group, and a total of 37,400 damage scenarios are numerically generated by applying randomly assigned damage to up to three damage groups. Modal analysis is then performed for all the damage scenarios, which are selectively used as either training or validation or verification sets based on the purpose of use. An artificial neural network with three hidden layers is constructed using a PyTorch program to recognize the patterns of the modal responses of the helideck model under both damaged and undamaged states, and the network is successively trained to minimize the loss function. Finally, the estimated damage rate from the proposed artificial neural network is compared to the actual assigned damage rate using 400 verification scenarios to show that the neural network is able to estimate the location and amount of structural damage precisely.

Die Shape Design for Cold Forged Products Using the Artificial Neural Network (신경망을 이용한 냉간단조품의 금형형상 설계)

  • Kim, D.J;Kim, T.H;Kim, B.M;Choi, J.C
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.727-734
    • /
    • 1997
  • In practice, the design of forging processes is performed based on an experience-oriented technology, that is designer's experience and expensive trial and errors. Using the finite element simulation and the artificial neural network, we propose an optimal die geometry satisfying the design conditions of final product. A three-layer neural network is used and the back propagation algorithm is employed to train the network. An optimal die geometry that satisfied the same between inner extruded rib and outer extruded one is determined by applying the ability of function approximation of neural network. The neural networks may reduce the number of finite element simulation for determine the optimal die geometry of forging products and further they are usefully applied to physical modelling for the forging design.