• 제목/요약/키워드: Artificial lightweight aggregate

검색결과 95건 처리시간 0.024초

인공경량 콘크리트의 깊이에 따른 수축에 관한 연구 (A Study of Shrinkage Depend on Depth of Artificial Lightweight Aggregate Concrete)

  • 이창수;림연
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.271-272
    • /
    • 2010
  • 본 논문은 경량콘크리트의 깊이에 따른 수축을 일반콘크리트와 비교하여 연구하였다. 경량콘크리트는 사전흡수수가 20%인 인공경량골재를 사용하였다. 물-결합재비가 30%일 때의 경량콘크리트는 일반콘크리트보다 단면의 평균 수축률은 감소하였지만 부등수축률은 다소 증가하는 현상이 나타났다. 물-결합재비가 40&일 때는 경량콘크리트는 일반콘크리트보다 단면 평균 수축률, 부등수축률 모두 감소한 것으로 나타났다.

  • PDF

바텀애시 및 준설토 기반의 인공 경량골재를 활용한 구조용 콘크리트의 배합설계 절차 (Mix Design Procedure of Structural Concrete Using Artificial Lightweight Aggregates Produced from Bottom Ash and Dredged Soils)

  • 이경호;양근혁
    • 한국건축시공학회지
    • /
    • 제18권2호
    • /
    • pp.133-140
    • /
    • 2018
  • 이 연구의 목적은 바텀애시 및 준설토 기반의 인공 경량골재 콘크리트의 합리적 배합설계 절차를 제시하는 것이다. 25 배합의 실험결과를 바탕으로 경량골재 콘크리트의 목표성능(압축강도, 절건 밀도, 초기 슬럼프, 공기량)에 대하여 물-시멘트 비, 단위 시멘트양, 경량 잔골재 치환율을 결정하는 식을 제시하였다. 제안된 식과 절대용적 배합의 개념으로부터 각 구성요소들의 단위용적중량을 산정하였다. 제시된 배합설계 절차는 기존 결정에 효율적으로 이용될 수 있다.

Characteristics of Fracture Energy on Steel Fiber-Reinforced Lightweight Polymer Concrete

  • Youn, Joon-No;Sung, Chan-Yong
    • 한국농공학회지
    • /
    • 제45권7호
    • /
    • pp.11-19
    • /
    • 2003
  • In this study, unsaturated polyester resin, artificial lightweight coarse aggregate, artificial lightweight fine aggregate, heavy calcium carbonate and steel fiber were used to produce a steel fiber-reinforced lightweight polymer concrete with which mechanical properties were examined. Results of this experimental study showed that the flexural strength of unnotched steel fiber-reinforced lightweight polymer concrete increased from 8.61 to 13.96 MPa when mixing ratio of fiber content increased from 0 to 1.5%. Stress intensity factors($K_{IC}$) increased with increasing fiber content ratio while it did not increase with increasing notch ratio. Energy release rate ($G_{IC}$) turned out to depend upon the notch size, and it increased with increasing steel fiber content.

폐유리를 재활용한 인공경량골재의 발포기구 (Bloating Mechanism of Artificial Lightweight Aggregate for Recycling the Waste Glass)

  • 강신휴;이기강
    • 한국세라믹학회지
    • /
    • 제47권5호
    • /
    • pp.445-449
    • /
    • 2010
  • The purpose of this study is to improve recycling rate of the waste glasses by investigating bloating mechanism. In this study, we use waste glass(W/G) and hard clay(H/C) as raw materials. The artificial lightweight aggregates were formed by plastic forming($\phi$=10 mm) and sintered by fast firing method at different temperatures(between 700 and $1250^{\circ}C$). The physical properties of the aggregates such as bulk specific gravity, adsorption and microstructure of surface and cross-section are investigated with the sintering temperature and rate of W/G-H/C contents. As the result of the bulk specific gravity graphs, we can found out the inflection point at content of W/G 60 wt%. From the microstructure images, we considered the artificial lightweight aggregates content of W/ G over 60wt% are distributed numerous micro-pores by organic oxidation without Black Core and the artificial lightweight aggregates of W/G below 60 wt% are distributed macro-pores with Black Core.

펠레타이저 공정변수와 인공경량골재의 성형체와 소성체 물성과의 상관관계 (Correlation to the Physical Properties of Green and Sintered Body of Artificial Lightweight Aggregate with the Pelletizing Variables)

  • 위영민;이기강
    • 한국세라믹학회지
    • /
    • 제44권10호
    • /
    • pp.568-573
    • /
    • 2007
  • For the manufacturing lightweight fine aggregate, clay and waste material was formed by pelletizer. The fine aggregate of 1-5 mm diameter was formed by diameter 76 cm pelletizer disc. Pelletization variables were : (1) pelletizer disc angle, (2) speed of revolution of pelletizer, (3) added pelletization time. Green and sintered aggregate were measured specific gravity, absorption rate and average size. The optimum condition were found that the pelletization variables were angle at $70^{\circ}$, speed of revolution of pelletizer at 23.2 rpm, and water/solid ratio at 1/5. At these conditions, it was formed that fine aggregate green whose average size was $2.0{\sim}3.35mm$. Specific gravity and average size are increased with low angle of disc and fast revolution speed of disc. Specific gravity and average size were not distinctly influenced by added pelletization time. Sintered aggregate was distinctly influenced by properties of green.

잔사회를 이용한 인공경량골재의 발포기구 (Bloating mechanism of artificial lightweight aggregate with reject ash)

  • 이기강
    • 한국결정성장학회지
    • /
    • 제22권3호
    • /
    • pp.158-163
    • /
    • 2012
  • 본 연구는 석탄 잔사회의 재활용률을 높이기 위하여 잔사회 인공경량골재의 발포기구를 규명하는 것이다. 본 실험의 원료는 잔사회와 준설토이다. 인공경량골재는 10 mm 크기의 구형 성형체를 제조하고, 이를 승온소성법으로 $1200^{\circ}C$에서 $1275^{\circ}C$까지 소결하였다. 인공경량골재의 온도별, 조성별 비중 및 흡수율 등의 물성을 측정하고, 단면과 표면을 관찰하였다. 비중 곡선의 결과 잔사회 함량이 80 wt.%일 때 변곡점을 나타내었다. 잔사회 인공경량골재의 미세구조를 관찰한 결과 잔사회 함량이 80 wt.%를 넘으면 블랙코어가 없고, 자기화 발포로 균일한 미세기공이 다량으로 존재하며, 잔사회 함량이 80 wt.% 이하이면 잔사회 인공경량골재는 블랙코어가 존재하면서 매우 큰 기공이 불균일하게 존재한다.

하수 슬러지를 이용한 비구조용 초경량골재의 개발 (Development of Super Lightweight Aggregate for Non-Structural Concrete using Sewage Sludge)

  • 문경주;위영미;박희열;이무성;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.619-624
    • /
    • 2002
  • The purpose of this study is to manufacture sintered lightweight aggregate for non-structural concrete using sewage sludge, organic waste matter is produced to a sewage treatment plant. It is tested for basic property and strength of artificial aggregate according to addition ratio of sewage sludge, and the results are compared with imported aggregate from Spain. As the results of experiment, the manufactured lightweight aggregate could be used for non-structural concrete. Also, it was favorably comparable to those of the imported aggregate. When it is manufactured with aggregate, it is safe environmentally because of protecting elution of harmful heavy metals.

  • PDF

하수 슬러지를 이용한 친환경인공경량골재콘크리트의 레미콘 적용 연구 (A Study on Application of Ready Mixed Concrete of ECO Lightweight Aggregate using Sewage Sludge)

  • 서치호;지석원;이성연;지석원;이재삼;이진우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.109-112
    • /
    • 2005
  • As civilization progresses amount of sewage sludge continues to increase from a sewage disposal plant with a huge expenditure of water resources. So It is necessary to reduce the high costs of sewage disposal and the pollution of the environment and also a unit cost of artificial lightweight aggregate by continual recycling. The purpose of this study is to put artificial lightweight aggregate concrete to practical use by using sewage sludge and clay

  • PDF

석탄회 인공경량골재를 사용한 고강도 콘크리트 보의 전단성능 (Shear Performance of High-Strength Reinforced Concrete Beams using Fly-Ash Artificial Lightweight Aggregate)

  • 정수영;윤현도;박완신
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권4호
    • /
    • pp.233-242
    • /
    • 2002
  • This study is to investigate experimentally the shear capacity of high-strength lightweight-aggregate reinforced concrete beams subjected to monotonic loading. Ten beams made of fly-ash artificial lightweight high-strength concrete were tested to determine their diagonal cracking and ultimate shear capacities. The variables in the test program were longitudinal reinforcement ratio; which variabled (between 0.83 and 1.66 percent), shear span-to-depth ratio (a/d=1.5, 2.5 and 3.5), and web reinforcement(0, 0.137, 0.275 and 0.554 percent). Six of the test beams had no web reinforcement and the other six had web reinforcement along the entire length of the beam. Most of beams failed brittly by distinct diagonal shear crack, and have reserved shear strength due to the lack of additional resisting effect by aggregate interlocking action after diagonal cracking. Test results indicate that the ACI Building Code predictions of Eq. (11-3) and (11-5) for lightweight concretes are unconservative for beams with tensile steel ratio of 1.66, a/d ratios greater than 2.5 without web reinforcement. Through a more rational approach to compute the contribution of concrete to the shear capacity, a postcracking shear strength in concrete is observed.

해양구조물 적용을 위한 경량골재콘크리트의 기초물성에 관한 연구 (A Study of the Basic Properties of Lightweight Aggregate Concrete for Offshore Structures Application)

  • 김명식;장희석;김충호;백동일
    • 한국해양공학회지
    • /
    • 제25권1호
    • /
    • pp.73-79
    • /
    • 2011
  • The various properties of concrete have been required, as civil engineering structures are getting larger and complicated. Therefore, the high performance of concrete, such as high strength, high fluidity, and low hydration heat, has been investigated largely. In this study, the properties of lightweight concrete-reducing self-weight of structure member have been studied in order to check the applicability of lightweight aggregate concrete to structural material. The experiments on compressive strength, splitting tensile strength, unit weight, and modulus of elasticity have been conducted with varying PLC, LWCI, LWCII, LWCII-SF5, LWCII-SF15 to check the basic properties. The compressive strength of 21MPa was obtained easily by using lightweight aggregate concrete and the addition of silica fume to increase the compressive strength slightly. To use lightweight aggregate concrete for civil engineering structures, systematic and rigorous studies are necessary.